"슈바르츠 삼각형 함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
 +
 +
* [[슈바르츠 삼각형 함수|슈바르츠 삼각형 함수 (s-함수)]]
  
 
 
 
 
12번째 줄: 14번째 줄:
 
* <math>\alpha=1-c,\beta=b-a,\gamma=c-a-b</math> 로 두면, 상반평면을 <math>\alpha\pi,\beta\pi,\gamma\pi</math> 를 세 각으로 갖는 삼각형으로 보낸다<br>
 
* <math>\alpha=1-c,\beta=b-a,\gamma=c-a-b</math> 로 두면, 상반평면을 <math>\alpha\pi,\beta\pi,\gamma\pi</math> 를 세 각으로 갖는 삼각형으로 보낸다<br>
 
*  역함수를 [[슈바르츠 삼각형 함수|슈워츠 s-함수]]라 한다<br>
 
*  역함수를 [[슈바르츠 삼각형 함수|슈워츠 s-함수]]라 한다<br>
* [[맴돌이군이 유한인 초기하 미분방정식에 대한 슈바르츠 목록|맴돌이군이 유한인 초기하 미분방정식에 대한 슈워츠 목록]]<br>
+
* [[맴돌이군이 유한인 초기하 미분방정식에 대한 슈바르츠 목록|맴돌이군이 유한인 초기하 미분방정식에 대한 슈워츠 목록]] 의 연구에서 중요한 역할<br>
  
 
 
 
 
21번째 줄: 23번째 줄:
  
 
<math>a'=a-c+1</math>, <math>b'=b-c+1</math>, <math>c'=2-c</math>
 
<math>a'=a-c+1</math>, <math>b'=b-c+1</math>, <math>c'=2-c</math>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="margin: 0px; line-height: 2em;">예</h5>
 +
 +
 
 +
 +
 
  
 
 
 
 
47번째 줄: 59번째 줄:
  
 
* [[맴돌이군이 유한인 초기하 미분방정식에 대한 슈바르츠 목록]]
 
* [[맴돌이군이 유한인 초기하 미분방정식에 대한 슈바르츠 목록]]
*  
+
* [[5차방정식과 정이십면체|오차방정식과 정이십면체]]
 +
 
 +
 
  
 
 
 
 
59번째 줄: 73번째 줄:
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 +
 +
 
 +
 +
 
 +
 +
<h5>매스매티카 파일 및 계산 리소스</h5>
 +
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxSTdyRUw4aG85V28/edit?pli=1
 +
* http://www.wolframalpha.com/input/?i=
 +
* http://functions.wolfram.com/
 +
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 +
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 +
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 +
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 +
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
  
 
 
 
 

2012년 5월 19일 (토) 02:44 판

이 항목의 스프링노트 원문주소

 

 

개요
  • automorphic 함수
  • 슈워츠 삼각형 함수라고도 불림
  • 세 파라메터 a,b,c에 대한 초기하 미분방정식의 일차독립인 두 해의 비율로 얻어지는 함수
  • \(\alpha=1-c,\beta=b-a,\gamma=c-a-b\) 로 두면, 상반평면을 \(\alpha\pi,\beta\pi,\gamma\pi\) 를 세 각으로 갖는 삼각형으로 보낸다
  • 역함수를 슈워츠 s-함수라 한다
  • 맴돌이군이 유한인 초기하 미분방정식에 대한 슈워츠 목록 의 연구에서 중요한 역할

 

 

\(s(z)=\frac{z^{1-c}\,_2F_1(a',b';c';z)}{\,_2F_1(a,b;c;z)}=\frac{z^{1-c}\,_2F_1(a-c+1,b-c+1;2-c;z)}{\,_2F_1(a,b;c;z)}\)

\(a'=a-c+1\), \(b'=b-c+1\), \(c'=2-c\)

 

 

 

 

 

 

역사

 

 

 

메모

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서