"유한생성 아벨군의 기본정리"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
11번째 줄: | 11번째 줄: | ||
− | + | ==예</h5> | |
* 1부터 n까지의 양의 정수들은 덧셈 (mod n) 에 대한 군의 구조를 이룸<br> | * 1부터 n까지의 양의 정수들은 덧셈 (mod n) 에 대한 군의 구조를 이룸<br> | ||
22번째 줄: | 22번째 줄: | ||
− | + | ==재미있는 사실</h5> | |
32번째 줄: | 32번째 줄: | ||
− | + | ==역사</h5> | |
* [[수학사연표 (역사)|수학사연표]] | * [[수학사연표 (역사)|수학사연표]] | ||
40번째 줄: | 40번째 줄: | ||
− | + | ==메모</h5> | |
46번째 줄: | 46번째 줄: | ||
− | + | ==관련된 항목들</h5> | |
* [[아벨군]] | * [[아벨군]] | ||
68번째 줄: | 68번째 줄: | ||
− | + | ==사전 형태의 자료</h5> | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
82번째 줄: | 82번째 줄: | ||
− | + | ==관련논문</h5> | |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
90번째 줄: | 90번째 줄: | ||
− | + | ==관련도서 및 추천도서</h5> | |
* 도서내검색<br> | * 도서내검색<br> | ||
104번째 줄: | 104번째 줄: | ||
− | + | ==관련기사</h5> | |
* 네이버 뉴스 검색 (키워드 수정)<br> | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
115번째 줄: | 115번째 줄: | ||
− | + | ==블로그</h5> | |
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= |
2012년 11월 1일 (목) 02:06 판
이 항목의 스프링노트 원문주소
간단한 소개
==예
- 1부터 n까지의 양의 정수들은 덧셈 (mod n) 에 대한 군의 구조를 이룸
- 이 군을 \(\mathbb{Z}/n\mathbb{Z}\) 로 표현함
- 1부터 n까지의 양의 정수 중에 n과 서로소인 수로 구성된 집합은 곱셈 (mod n) 에 대한 군의 구조를 이룸
- 이 군을 \((\mathbb{Z}/n\mathbb{Z})^\times\) 로 표현함
==재미있는 사실
==역사
==메모
==관련된 항목들
수학용어번역
==사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/w/index.php?title=Fundamental_theorem_of_finitely_generated_abelian_groups
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
==관련논문
==관련도서 및 추천도서
- 도서내검색
- 도서검색
==관련기사
- 네이버 뉴스 검색 (키워드 수정)
==블로그