"전자기 포텐셜과 맥스웰 방정식"의 두 판 사이의 차이
(피타고라스님이 이 페이지의 이름을 포벡터 포텐셜과 맥스웰 방정식로 바꾸었습니다.) |
|
(차이 없음)
|
2012년 6월 12일 (화) 04:39 판
이 항목의 수학노트 원문주소
개요
- 벡터포텐셜 \(\mathbf{A}=(A_x,A_y,A_z)\)
- 전기장
-
\(\nabla \cdot \mathbf{B} = 0\)로부터, \(\mathbf{B}=\nabla \times \mathbf{A}\) - 스칼라 potential \(\phi\)
\(\mathbf{E}=-\frac{\partial\mathbf{A}}{\partial t} - \nabla \phi \)
\(\left( \begin{array}{cccc} 0 & {E_x} & {E_y} & {E_z} \\ -{E_x} & 0 & -{B_z} & {B_y} \\ -{E_y} & {B_z} & 0 & -{B_x} \\ -{E_z} & -{B_y} & {B_x} & 0 \end{array} \right)\)
\(=\left( \begin{array}{cccc} 0 & -\frac{\partial {A_x}}{\partial t}-\frac{\partial \phi }{\partial x} & -\frac{\partial {A_y}}{\partial t}-\frac{\partial \phi }{\partial y} & -\frac{\partial {A_z}}{\partial t}-\frac{\partial \phi }{\partial z} \\ \frac{\partial {A_x}}{\partial t}+\frac{\partial \phi }{\partial x} & 0 & \frac{\partial {A_x}}{\partial y}-\frac{\partial {A_y}}{\partial x} & \frac{\partial {A_x}}{\partial z}-\frac{\partial {A_z}}{\partial x} \\ \frac{\partial {A_y}}{\partial t}+\frac{\partial \phi }{\partial y} & \frac{\partial {A_y}}{\partial x}-\frac{\partial {A_x}}{\partial y} & 0 & \frac{\partial {A_y}}{\partial z}-\frac{\partial {A_z}}{\partial y} \\ \frac{\partial {A_z}}{\partial t}+\frac{\partial \phi }{\partial z} & \frac{\partial {A_z}}{\partial x}-\frac{\partial {A_x}}{\partial z} & \frac{\partial {A_z}}{\partial y}-\frac{\partial {A_y}}{\partial z} & 0 \end{array} \right)\)
맥스웰 방정식의 표현
- 포텐셜을 통해, 맥스웰 방정식 은 다음과 같이 표현된다
\(\nabla^2 \varphi + \frac{\partial}{\partial t} \left ( \mathbf \nabla \cdot \mathbf A \right ) = - \frac{\rho}{\varepsilon_0}\)
\(\left ( \nabla^2 \mathbf A - \frac{1}{c^2} \frac{\partial^2 \mathbf A}{\partial t^2} \right ) - \mathbf \nabla \left ( \mathbf \nabla \cdot \mathbf A + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} \right ) = - \mu_0 \mathbf J\)
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Electromagnetic_four-potential
- http://en.wikipedia.org/wiki/Mathematical_descriptions_of_the_electromagnetic_field#Potential_field_approach
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문