"좌표계"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
  
 
* [[좌표계]]
 
* [[좌표계]]
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; background-position: 0px 100%; font-size: 1.16em; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">개요</h5>
+
<h5 style="margin: 0px; background-position: 0px 100%; font-size: 1.16em; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">개요==
  
 
*  "어떻게 하면 점의 위치를 숫자로 표현할 수 있을까?" 에 대한 문제.<br>
 
*  "어떻게 하면 점의 위치를 숫자로 표현할 수 있을까?" 에 대한 문제.<br>
19번째 줄: 19번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; background-position: 0px 100%; font-size: 1.16em; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">평면좌표계</h5>
+
<h5 style="margin: 0px; background-position: 0px 100%; font-size: 1.16em; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">평면좌표계==
  
 
직교좌표계 (x, y) : 직교하는 두 축
 
직교좌표계 (x, y) : 직교하는 두 축
29번째 줄: 29번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; background-position: 0px 100%; font-size: 1.16em; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">공간좌표계</h5>
+
<h5 style="margin: 0px; background-position: 0px 100%; font-size: 1.16em; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">공간좌표계==
  
 
직교좌표계 (x, y, z)
 
직교좌표계 (x, y, z)
59번째 줄: 59번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; background-position: 0px 100%; font-size: 1.16em; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">예</h5>
+
<h5 style="margin: 0px; background-position: 0px 100%; font-size: 1.16em; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">예==
  
 
원, 구의 부피 구하기
 
원, 구의 부피 구하기
71번째 줄: 71번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; background-position: 0px 100%; font-size: 1.16em; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">사전 형태의 자료</h5>
+
<h5 style="margin: 0px; background-position: 0px 100%; font-size: 1.16em; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
85번째 줄: 85번째 줄:
 
 
 
 
  
==매스매티카 파일 및 계산 리소스</h5>
+
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxOE96OXFfbmVTQ3lYckxYSXVldktGdw/edit?pli=1 <br>
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxOE96OXFfbmVTQ3lYckxYSXVldktGdw/edit?pli=1 <br>

2012년 11월 1일 (목) 13:04 판

이 항목의 스프링노트 원문주소==    
개요==
  • "어떻게 하면 점의 위치를 숫자로 표현할 수 있을까?" 에 대한 문제.
  • 차원 수만큼의 숫자가 필요하다. 직선 위의 점은 하나의 수, 평면 위의 점은 두 개의 수, 공간 위의 점은 세 개의 수, ..., n 차원 공간 안의 점은 n 개의 수로 표현할 수 있다. 
  • 르네 데카르트 "방법서설" 에 해석기하학에 대한 아이디어가 처음 등장.  (직교좌표계)
  • 다양한 좌표계가 존재한다. 그때그때 상황에 맞는 좌표계를 선택하면 문제를 빨리 풀수 있는 경우가 많다. (특히 물리적 상황에서) 다양한 곡선의 방정식을 좀더 간단하고 아름답게 표현할 수 있기도 하다.
  • 굉장히 많은 좌표계가 존재한다. 대표적인 것들만 아래에 간략하게 다룸.
   
평면좌표계== 직교좌표계 (x, y) : 직교하는 두 축 극좌표계 (r, \theta) : 하나의 반직선(극선)    
공간좌표계== 직교좌표계 (x, y, z) 원통좌표계(r, theta, z) 구면좌표계(rho, theta, phi)   넓이소와 부피소에 대한 이야기   원통좌표계\[\mathrm dS= \rho\,d\varphi\,dz.\] \(\mathrm dV = \rho\,\mathrm d\rho\,\mathrm d\varphi\,\mathrm dz.\)   구면좌표계 \[\mathrm{d}S=r^2\sin\theta\,\mathrm{d}\theta\,\mathrm{d}\varphi\] \(\mathrm{d}V=r^2\sin\theta\,\mathrm{d}r\,\mathrm{d}\theta\,\mathrm{d}\varphi\)  
예== 원, 구의 부피 구하기   등등등    
사전 형태의 자료==    

매스매티카 파일 및 계산 리소스