좌표계

수학노트
둘러보기로 가기 검색하러 가기

개요

  • "어떻게 하면 점의 위치를 숫자로 표현할 수 있을까?" 에 대한 문제.
  • 차원 수만큼의 숫자가 필요하다. 직선 위의 점은 하나의 수, 평면 위의 점은 두 개의 수, 공간 위의 점은 세 개의 수, ..., n 차원 공간 안의 점은 n 개의 수로 표현할 수 있다.
  • 르네 데카르트 "방법서설" 에 해석기하학에 대한 아이디어가 처음 등장. (직교좌표계)
  • 다양한 좌표계가 존재한다. 그때그때 상황에 맞는 좌표계를 선택하면 문제를 빨리 풀수 있는 경우가 많다. (특히 물리적 상황에서) 다양한 곡선의 방정식을 좀더 간단하고 아름답게 표현할 수 있기도 하다.
  • 굉장히 많은 좌표계가 존재한다. 대표적인 것들만 아래에 간략하게 다룸.



평면좌표계

직교좌표계 (x, y) : 직교하는 두 축

극좌표계 (r, \theta) : 하나의 반직선(극선)



공간좌표계

직교좌표계 (x, y, z)

원통좌표계(r, theta, z)

구면좌표계(rho, theta, phi)


넓이소와 부피소에 대한 이야기


원통좌표계\[\mathrm dS= \rho\,d\varphi\,dz.\]

\(\mathrm dV = \rho\,\mathrm d\rho\,\mathrm d\varphi\,\mathrm dz.\)


구면좌표계 \[\mathrm{d}S=r^2\sin\theta\,\mathrm{d}\theta\,\mathrm{d}\varphi\]

\(\mathrm{d}V=r^2\sin\theta\,\mathrm{d}r\,\mathrm{d}\theta\,\mathrm{d}\varphi\)


원, 구의 부피 구하기


등등등



사전 형태의 자료


매스매티카 파일 및 계산 리소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'coordinate'}, {'LEMMA': 'system'}]
  • [{'LOWER': 'system'}, {'LOWER': 'of'}, {'LEMMA': 'coordinate'}]