"체론(field theory)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
17번째 줄: 17번째 줄:
  
 
*  집합 <math>\mathbb{F}</math><br>
 
*  집합 <math>\mathbb{F}</math><br>
*   <br>
+
 
 +
 
 +
 
 +
 
 +
 
 +
<h5 style="margin: 0px; line-height: 2em;">체확장</h5>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5 style="margin: 0px; line-height: 2em;">거듭제곱근 체확장(radical extension)</h5>
 +
 
 +
*  기본체 <math>F=R_0</math><br>
 +
*  적당한 원소 <math>a_0 \in R_0</math>와 자연수 <math>n_0</math>에 대하여, 거듭제곱근 <math>\sqrt[n_0]a</math> 를 추가하여 얻어지는 체확장 <math>R_1=R_0(\sqrt[n_0]a_0)</math><br>
 +
적당한 원소 <math>a_1\in R_1</math>와 자연수 <math>n_1</math>에 대하여, 거듭제곱근 <math>\sqrt[n_1]a_1</math> 를 추가하여 얻어지는 체확장 <math>R_2=R_1(\sqrt[n_1]a_1)</math><br>
 +
*  이러한 체확장을 유한번 반복하여 얻어지는 <math>F=R_0</math>의 체확장 <math>R</math> 을 거듭제곱근 체확장이라 한다<br>
 +
* [[정다각형의 작도]],<br>
 +
* [[5차방정식과 근의 공식]]<br>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5 style="margin: 0px; line-height: 2em;">다항식과 갈루아체확장</h5>
 +
 
 +
*  (기약)다항식으로부터 얻어지는 해를 모두 추가하여 주어진 체를 확장시킬 수 있음<br>
 +
*  유리수체 <math>\mathbb{Q}</math>에서 정의된 다항식 <math>x^3-2=0</math><br>
 +
*  해는 <math>\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}</math> 세 개가 존재<br>
 +
*  유리수체 <math>\mathbb{Q}</math>에 <math>\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}</math>를 집어넣으면 유리수체의 확장 <math>K=\mathbb{Q}(\omega, \sqrt[3]{2})</math> 를 얻음<br>
 +
*  이 때, 체 <math>K</math>는 유리수체 <math>\mathbb{Q}</math>위에 정의된 벡터공간이 되며, 벡터공간으로서의 차원은 <math>[K : \mathbb{Q}]=6</math>이 됨<br>
 +
 
 +
 
  
 
 
 
 
41번째 줄: 77번째 줄:
 
<h5>관련된 항목들</h5>
 
<h5>관련된 항목들</h5>
  
 +
* [[갈루아 이론]]<br>
 +
* [[5차방정식과 근의 공식]]<br>
 
* [[#]]<br>
 
* [[#]]<br>
 
* [[p진해석학(p-adic analysis)|p-adic analysis]]<br>
 
* [[p진해석학(p-adic analysis)|p-adic analysis]]<br>
56번째 줄: 94번째 줄:
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 +
 +
 
  
 
 
 
 
62번째 줄: 102번째 줄:
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 +
* [http://en.wikipedia.org/wiki/Field_%28mathematics%29 http://en.wikipedia.org/wiki/Field_(mathematics)]
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
69번째 줄: 110번째 줄:
  
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">참고할만한 자료</h5>
 
 
* http://ko.wikipedia.org/wiki/
 
* [http://en.wikipedia.org/wiki/Field_%28mathematics%29 http://en.wikipedia.org/wiki/Field_(mathematics)]
 
  
 
 
 
 
88번째 줄: 124번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
+
 
  
 +
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
 +
 
 
* [http://www.amazon.com/exec/obidos/ASIN/0817646841/ebooksclub-20/ A History of Abstract Algebra]<br>
 
* [http://www.amazon.com/exec/obidos/ASIN/0817646841/ebooksclub-20/ A History of Abstract Algebra]<br>
 
**  Israel Kleiner<br>
 
**  Israel Kleiner<br>
 +
 
*  도서내검색<br>
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
*  도서검색<br>
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
+
** http://books.google.com/books?q=
 +
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
  
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
+
 
 +
 
 +
<h5>블로그</h5>
  
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
+
* 구글 블로그 검색<br>
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
+
** [http://blogsearch.google.com/blogsearch?q=%EC%B2%B4%EB%A1%A0 http://blogsearch.google.com/blogsearch?q=체론]
 +
** http://blogsearch.google.com/blogsearch?q=
 +
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 +
* [http://math.dongascience.com/ 수학동아]
 +
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 +
* [http://betterexplained.com/ BetterExplained]

2010년 2월 1일 (월) 17:53 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 사칙연산을 할 수 있는 대수적 구조
  • 실수, 복소수, 유한체, p-adic 체, function field 등

 

 

체(field)의 정의
  • 집합 \(\mathbb{F}\)

 

 

체확장

 

 

 

거듭제곱근 체확장(radical extension)
  • 기본체 \(F=R_0\)
  • 적당한 원소 \(a_0 \in R_0\)와 자연수 \(n_0\)에 대하여, 거듭제곱근 \(\sqrt[n_0]a\) 를 추가하여 얻어지는 체확장 \(R_1=R_0(\sqrt[n_0]a_0)\)
  • 적당한 원소 \(a_1\in R_1\)와 자연수 \(n_1\)에 대하여, 거듭제곱근 \(\sqrt[n_1]a_1\) 를 추가하여 얻어지는 체확장 \(R_2=R_1(\sqrt[n_1]a_1)\)
  • 이러한 체확장을 유한번 반복하여 얻어지는 \(F=R_0\)의 체확장 \(R\) 을 거듭제곱근 체확장이라 한다
  • 정다각형의 작도,
  • 5차방정식과 근의 공식

 

 

 

다항식과 갈루아체확장
  • (기약)다항식으로부터 얻어지는 해를 모두 추가하여 주어진 체를 확장시킬 수 있음
  • 유리수체 \(\mathbb{Q}\)에서 정의된 다항식 \(x^3-2=0\)
  • 해는 \(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}\) 세 개가 존재
  • 유리수체 \(\mathbb{Q}\)에 \(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}\)를 집어넣으면 유리수체의 확장 \(K=\mathbb{Q}(\omega, \sqrt[3]{2})\) 를 얻음
  • 이 때, 체 \(K\)는 유리수체 \(\mathbb{Q}\)위에 정의된 벡터공간이 되며, 벡터공간으로서의 차원은 \([K : \mathbb{Q}]=6\)이 됨

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

 

관련논문

 

 

관련도서

 

 

 

블로그