"체론(field theory)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
17번째 줄: | 17번째 줄: | ||
* 집합 <math>\mathbb{F}</math><br> | * 집합 <math>\mathbb{F}</math><br> | ||
− | * <br> | + | |
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 2em;">체확장</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 2em;">거듭제곱근 체확장(radical extension)</h5> | ||
+ | |||
+ | * 기본체 <math>F=R_0</math><br> | ||
+ | * 적당한 원소 <math>a_0 \in R_0</math>와 자연수 <math>n_0</math>에 대하여, 거듭제곱근 <math>\sqrt[n_0]a</math> 를 추가하여 얻어지는 체확장 <math>R_1=R_0(\sqrt[n_0]a_0)</math><br> | ||
+ | * 적당한 원소 <math>a_1\in R_1</math>와 자연수 <math>n_1</math>에 대하여, 거듭제곱근 <math>\sqrt[n_1]a_1</math> 를 추가하여 얻어지는 체확장 <math>R_2=R_1(\sqrt[n_1]a_1)</math><br> | ||
+ | * 이러한 체확장을 유한번 반복하여 얻어지는 <math>F=R_0</math>의 체확장 <math>R</math> 을 거듭제곱근 체확장이라 한다<br> | ||
+ | * [[정다각형의 작도]],<br> | ||
+ | * [[5차방정식과 근의 공식]]<br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 2em;">다항식과 갈루아체확장</h5> | ||
+ | |||
+ | * (기약)다항식으로부터 얻어지는 해를 모두 추가하여 주어진 체를 확장시킬 수 있음<br> | ||
+ | * 유리수체 <math>\mathbb{Q}</math>에서 정의된 다항식 <math>x^3-2=0</math><br> | ||
+ | * 해는 <math>\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}</math> 세 개가 존재<br> | ||
+ | * 유리수체 <math>\mathbb{Q}</math>에 <math>\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}</math>를 집어넣으면 유리수체의 확장 <math>K=\mathbb{Q}(\omega, \sqrt[3]{2})</math> 를 얻음<br> | ||
+ | * 이 때, 체 <math>K</math>는 유리수체 <math>\mathbb{Q}</math>위에 정의된 벡터공간이 되며, 벡터공간으로서의 차원은 <math>[K : \mathbb{Q}]=6</math>이 됨<br> | ||
+ | |||
+ | |||
41번째 줄: | 77번째 줄: | ||
<h5>관련된 항목들</h5> | <h5>관련된 항목들</h5> | ||
+ | * [[갈루아 이론]]<br> | ||
+ | * [[5차방정식과 근의 공식]]<br> | ||
* [[#]]<br> | * [[#]]<br> | ||
* [[p진해석학(p-adic analysis)|p-adic analysis]]<br> | * [[p진해석학(p-adic analysis)|p-adic analysis]]<br> | ||
56번째 줄: | 94번째 줄: | ||
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
+ | |||
+ | |||
62번째 줄: | 102번째 줄: | ||
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
+ | * [http://en.wikipedia.org/wiki/Field_%28mathematics%29 http://en.wikipedia.org/wiki/Field_(mathematics)] | ||
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
69번째 줄: | 110번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
88번째 줄: | 124번째 줄: | ||
− | + | ||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5> | ||
+ | |||
* [http://www.amazon.com/exec/obidos/ASIN/0817646841/ebooksclub-20/ A History of Abstract Algebra]<br> | * [http://www.amazon.com/exec/obidos/ASIN/0817646841/ebooksclub-20/ A History of Abstract Algebra]<br> | ||
** Israel Kleiner<br> | ** Israel Kleiner<br> | ||
+ | |||
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= | ||
* 도서검색<br> | * 도서검색<br> | ||
− | ** http:// | + | ** http://books.google.com/books?q= |
+ | ** http://book.daum.net/search/mainSearch.do?query= | ||
** http://book.daum.net/search/mainSearch.do?query= | ** http://book.daum.net/search/mainSearch.do?query= | ||
− | <h5 | + | |
+ | |||
+ | <h5>블로그</h5> | ||
− | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | + | * 구글 블로그 검색<br> |
− | * | + | ** [http://blogsearch.google.com/blogsearch?q=%EC%B2%B4%EB%A1%A0 http://blogsearch.google.com/blogsearch?q=체론] |
+ | ** http://blogsearch.google.com/blogsearch?q= | ||
+ | * [http://navercast.naver.com/science/list 네이버 오늘의과학] | ||
+ | * [http://math.dongascience.com/ 수학동아] | ||
+ | * [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS] | ||
+ | * [http://betterexplained.com/ BetterExplained] |
2010년 2월 1일 (월) 17:53 판
이 항목의 스프링노트 원문주소
개요
- 사칙연산을 할 수 있는 대수적 구조
- 실수, 복소수, 유한체, p-adic 체, function field 등
체(field)의 정의
- 집합 \(\mathbb{F}\)
체확장
거듭제곱근 체확장(radical extension)
- 기본체 \(F=R_0\)
- 적당한 원소 \(a_0 \in R_0\)와 자연수 \(n_0\)에 대하여, 거듭제곱근 \(\sqrt[n_0]a\) 를 추가하여 얻어지는 체확장 \(R_1=R_0(\sqrt[n_0]a_0)\)
- 적당한 원소 \(a_1\in R_1\)와 자연수 \(n_1\)에 대하여, 거듭제곱근 \(\sqrt[n_1]a_1\) 를 추가하여 얻어지는 체확장 \(R_2=R_1(\sqrt[n_1]a_1)\)
- 이러한 체확장을 유한번 반복하여 얻어지는 \(F=R_0\)의 체확장 \(R\) 을 거듭제곱근 체확장이라 한다
- 정다각형의 작도,
- 5차방정식과 근의 공식
다항식과 갈루아체확장
- (기약)다항식으로부터 얻어지는 해를 모두 추가하여 주어진 체를 확장시킬 수 있음
- 유리수체 \(\mathbb{Q}\)에서 정의된 다항식 \(x^3-2=0\)
- 해는 \(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}\) 세 개가 존재
- 유리수체 \(\mathbb{Q}\)에 \(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}\)를 집어넣으면 유리수체의 확장 \(K=\mathbb{Q}(\omega, \sqrt[3]{2})\) 를 얻음
- 이 때, 체 \(K\)는 유리수체 \(\mathbb{Q}\)위에 정의된 벡터공간이 되며, 벡터공간으로서의 차원은 \([K : \mathbb{Q}]=6\)이 됨
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Field_(mathematics)
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Field Theory: From Equations to Axiomatization, Part I
- Israel Kleiner, The American Mathematical Monthly, Vol. 106, No. 7 (Aug. - Sep., 1999), pp. 677-684
- Field Theory: From Equations to Axiomatization, Part II
- Israel Kleiner, The American Mathematical Monthly, Vol. 106, No. 9 (Nov., 1999), pp. 859-863
관련도서
- A History of Abstract Algebra
- Israel Kleiner
- Israel Kleiner
- 도서내검색
- 도서검색