"체론(field theory)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
36번째 줄: 36번째 줄:
 
*  적당한 원소 <math>a_1\in R_1</math>와 자연수 <math>n_1</math>에 대하여, 거듭제곱근 <math>\sqrt[n_1]a_1</math> 를 추가하여 얻어지는 체확장 <math>R_2=R_1(\sqrt[n_1]a_1)</math><br>
 
*  적당한 원소 <math>a_1\in R_1</math>와 자연수 <math>n_1</math>에 대하여, 거듭제곱근 <math>\sqrt[n_1]a_1</math> 를 추가하여 얻어지는 체확장 <math>R_2=R_1(\sqrt[n_1]a_1)</math><br>
 
*  이러한 체확장을 유한번 반복하여 얻어지는 <math>F=R_0</math>의 체확장 <math>R</math> 을 거듭제곱근 체확장이라 한다<br>
 
*  이러한 체확장을 유한번 반복하여 얻어지는 <math>F=R_0</math>의 체확장 <math>R</math> 을 거듭제곱근 체확장이라 한다<br>
* [[정다각형의 작도]],<br>
+
* [[정다각형의 작도]], [[5차방정식과 근의 공식]] 에서 중요하게 사용되는 개념이다<br>
* [[5차방정식과 근의 공식]]<br>
 
  
 
 
 
 
101번째 줄: 100번째 줄:
 
<h5>사전 형태의 자료</h5>
 
<h5>사전 형태의 자료</h5>
  
* http://ko.wikipedia.org/wiki/
+
* [http://ko.wikipedia.org/wiki/%EC%B2%B4 http://ko.wikipedia.org/wiki/체]
 
* [http://en.wikipedia.org/wiki/Field_%28mathematics%29 http://en.wikipedia.org/wiki/Field_(mathematics)]
 
* [http://en.wikipedia.org/wiki/Field_%28mathematics%29 http://en.wikipedia.org/wiki/Field_(mathematics)]
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/

2010년 2월 1일 (월) 18:01 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 사칙연산을 할 수 있는 대수적 구조
  • 실수, 복소수, 유한체, p-adic 체, function field 등

 

 

체(field)의 정의
  • 집합 \(\mathbb{F}\)

 

 

체확장

 

 

 

거듭제곱근 체확장(radical extension)
  • 기본체 \(F=R_0\)
  • 적당한 원소 \(a_0 \in R_0\)와 자연수 \(n_0\)에 대하여, 거듭제곱근 \(\sqrt[n_0]a\) 를 추가하여 얻어지는 체확장 \(R_1=R_0(\sqrt[n_0]a_0)\)
  • 적당한 원소 \(a_1\in R_1\)와 자연수 \(n_1\)에 대하여, 거듭제곱근 \(\sqrt[n_1]a_1\) 를 추가하여 얻어지는 체확장 \(R_2=R_1(\sqrt[n_1]a_1)\)
  • 이러한 체확장을 유한번 반복하여 얻어지는 \(F=R_0\)의 체확장 \(R\) 을 거듭제곱근 체확장이라 한다
  • 정다각형의 작도, 5차방정식과 근의 공식 에서 중요하게 사용되는 개념이다

 

 

 

다항식과 갈루아체확장
  • (기약)다항식으로부터 얻어지는 해를 모두 추가하여 주어진 체를 확장시킬 수 있음
  • 유리수체 \(\mathbb{Q}\)에서 정의된 다항식 \(x^3-2=0\)
  • 해는 \(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}\) 세 개가 존재
  • 유리수체 \(\mathbb{Q}\)에 \(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}\)를 집어넣으면 유리수체의 확장 \(K=\mathbb{Q}(\omega, \sqrt[3]{2})\) 를 얻음
  • 이 때, 체 \(K\)는 유리수체 \(\mathbb{Q}\)위에 정의된 벡터공간이 되며, 벡터공간으로서의 차원은 \([K : \mathbb{Q}]=6\)이 됨

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

 

관련논문

 

 

관련도서

 

 

 

블로그