"타원 모듈라 λ-함수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
이 항목의 스프링노트 원문주소==
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소== |
* [[타원 모듈라 λ-함수]] | * [[타원 모듈라 λ-함수]] | ||
7번째 줄: | 7번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요== |
* <math>\lambda(\tau)=k^2(\tau)</math> 는 타원적분의 modulus라고 불리며, 아벨, 자코비와 후학들(에르미트)에 의해 많이 연구됨<br> | * <math>\lambda(\tau)=k^2(\tau)</math> 는 타원적분의 modulus라고 불리며, 아벨, 자코비와 후학들(에르미트)에 의해 많이 연구됨<br> | ||
18번째 줄: | 18번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">세타함수와의 관계 | + | <h5 style="margin: 0px; line-height: 2em;">세타함수와의 관계== |
* [[자코비 세타함수]]<br>[[자코비 세타함수|자코비 세타함수]]<math>k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}</math><br><math>\lambda(\tau)=k^2(\tau)=\frac{\theta_2^4(\tau)}{\theta_3^4(\tau)}</math><br> | * [[자코비 세타함수]]<br>[[자코비 세타함수|자코비 세타함수]]<math>k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}</math><br><math>\lambda(\tau)=k^2(\tau)=\frac{\theta_2^4(\tau)}{\theta_3^4(\tau)}</math><br> | ||
26번째 줄: | 26번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">바이어슈트라스 타원함수와의 관계 | + | <h5 style="margin: 0px; line-height: 2em;">바이어슈트라스 타원함수와의 관계== |
* [[바이어슈트라스 타원함수 ℘|바이어슈트라스의 타원함수]]<br>[[바이어슈트라스 타원함수 ℘|바이어슈트라스 타원함수 ℘]]<math>\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}</math><br><math>\tau=\frac{\omega_2}{\omega_1}</math> 로 두면, <math>\lambda(\tau)=\frac{e_3-e_2}{e_1-e_2}</math><br> 여기서 <br><math>e_1=\wp(\frac{\omega_1}{2};\omega_1,\omega_2)</math><br><math>e_2=\wp(\frac{\omega_2}{2};\omega_1,\omega_2)</math><br><math>e_3=\wp(\frac{\omega_1+\omega_2}{2};\omega_1,\omega_2)</math><br> | * [[바이어슈트라스 타원함수 ℘|바이어슈트라스의 타원함수]]<br>[[바이어슈트라스 타원함수 ℘|바이어슈트라스 타원함수 ℘]]<math>\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}</math><br><math>\tau=\frac{\omega_2}{\omega_1}</math> 로 두면, <math>\lambda(\tau)=\frac{e_3-e_2}{e_1-e_2}</math><br> 여기서 <br><math>e_1=\wp(\frac{\omega_1}{2};\omega_1,\omega_2)</math><br><math>e_2=\wp(\frac{\omega_2}{2};\omega_1,\omega_2)</math><br><math>e_3=\wp(\frac{\omega_1+\omega_2}{2};\omega_1,\omega_2)</math><br> | ||
36번째 줄: | 36번째 줄: | ||
− | <h5 style="line-height: 2em; margin: 0px;">모듈라군에 의한 변환 | + | <h5 style="line-height: 2em; margin: 0px;">모듈라군에 의한 변환== |
* [[모듈라 군(modular group)]]에 의한 변환<br> | * [[모듈라 군(modular group)]]에 의한 변환<br> | ||
50번째 줄: | 50번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">타원 모듈라 j-함수와의 관계 | + | <h5 style="margin: 0px; line-height: 2em;">타원 모듈라 j-함수와의 관계== |
* [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)|타원 모듈라 j-함수 (j-invariant)]]<br> | * [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)|타원 모듈라 j-함수 (j-invariant)]]<br> | ||
70번째 줄: | 70번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">special values | + | <h5 style="margin: 0px; line-height: 2em;">special values== |
<math>\lambda(i\infty)=0</math> | <math>\lambda(i\infty)=0</math> | ||
86번째 줄: | 86번째 줄: | ||
− | ==역사 | + | ==역사== |
* [[수학사연표 (역사)|수학사연표]] | * [[수학사연표 (역사)|수학사연표]] | ||
94번째 줄: | 94번째 줄: | ||
− | ==메모 | + | ==메모== |
100번째 줄: | 100번째 줄: | ||
− | ==관련된 항목들 | + | ==관련된 항목들== |
* [[타원적분의 singular value k]] | * [[타원적분의 singular value k]] | ||
109번째 줄: | 109번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역== |
* http://www.google.com/dictionary?langpair=en|ko&q= | * http://www.google.com/dictionary?langpair=en|ko&q= | ||
120번째 줄: | 120번째 줄: | ||
− | ==사전 형태의 자료 | + | ==사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
133번째 줄: | 133번째 줄: | ||
− | ==관련논문 | + | ==관련논문== |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
142번째 줄: | 142번째 줄: | ||
− | ==관련도서 | + | ==관련도서== |
* '''[AHL1979]'''Lars Ahlfors, [http://www.amazon.com/Complex-Analysis-Lars-Ahlfors/dp/0070006571 Complex Analysis] , 3rd edition, McGraw-Hill, 1979<br> | * '''[AHL1979]'''Lars Ahlfors, [http://www.amazon.com/Complex-Analysis-Lars-Ahlfors/dp/0070006571 Complex Analysis] , 3rd edition, McGraw-Hill, 1979<br> | ||
** 7.3.4를 참고 | ** 7.3.4를 참고 |
2012년 11월 1일 (목) 13:12 판
이 항목의 스프링노트 원문주소==
개요==
- \(\lambda(\tau)=k^2(\tau)\) 는 타원적분의 modulus라고 불리며, 아벨, 자코비와 후학들(에르미트)에 의해 많이 연구됨
- \(k(\tau)\)에 대해서는 타원적분의 singular value k 참조
- 가장 기본적인 모듈라함수로 여겨졌으나, 나중에 \(j\)-불변량(타원 모듈라 j-함수 (elliptic modular function, j-invariant))에 그 자리를 내줌
- level 2 인 congruence 모듈라 군(modular group) \(\Gamma(2)\)에 대한 모듈라 함수가 됨
\(\Gamma(2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{2} \right\}\)
세타함수와의 관계==
바이어슈트라스 타원함수와의 관계==
- 바이어슈트라스의 타원함수
바이어슈트라스 타원함수 ℘\(\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}\)
\(\tau=\frac{\omega_2}{\omega_1}\) 로 두면, \(\lambda(\tau)=\frac{e_3-e_2}{e_1-e_2}\)
여기서
\(e_1=\wp(\frac{\omega_1}{2};\omega_1,\omega_2)\)
\(e_2=\wp(\frac{\omega_2}{2};\omega_1,\omega_2)\)
\(e_3=\wp(\frac{\omega_1+\omega_2}{2};\omega_1,\omega_2)\)
- \(e_1,e_2,e_3,\infty\) 네 점의 교차비로 이해할 수 있음
- 사영기하학과 교차비 항목 참조
\(z_4=\infty\) 인 경우
\((z_1,z_2;z_3,\infty) = \frac{(z_1-z_3)}{(z_2-z_3)}\)
모듈라군에 의한 변환==
- 모듈라 군(modular group)에 의한 변환
- 생성원
\(S=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \), \(T=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \)
- \(T: \tau \to \tau+1\)에 의한 변화
\(\begin{pmatrix} \omega'_2 \\ \omega'_1 \end{pmatrix}=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix} =\begin{pmatrix} \omega_1+\omega_2 \\ \omega_1 \end{pmatrix}\)
\(e_1'=\wp(\frac{\omega_1}{2})=e_1\)
\(e_2'=\wp(\frac{\omega_1+\omega_2}{2})=e_3\)
\(e_3'=\wp(\frac{\omega_2}{2})=e_2\)
\(\lambda(\tau+1)=\frac{e_2-e_3}{e_1-e_3}=\frac{\lambda(\tau)}{\lambda(\tau)-1}\)
- \(S: \tau \to -\frac{1}{\tau}\)에 의한 변화
\(\begin{pmatrix} \omega'_2 \\ \omega'_1 \end{pmatrix}=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix} =\begin{pmatrix} -\omega_1 \\ \omega_2 \end{pmatrix}\)
\(e_1'=\wp(\frac{\omega_2}{2})=e_2\)
\(e_2'=\wp(\frac{\omega_1}{2})=e_1\)
\(e_3'=\wp(\frac{\omega_1+\omega_2}{2})=e_3\)
\(\lambda(-\frac{1}{\tau})=\frac{e_3-e_1}{e_2-e_1}=1-\lambda(\tau)\)
- 따라서 모듈라 군(modular group)에 의해, 다음과 같은 값을 취할 수 있게 된다
교차비
\( \lambda, {1\over\lambda},{1\over{1-\lambda}}, 1-\lambda, {\lambda\over{\lambda-1}}, {{\lambda-1}\over\lambda}\)
- 이러한 표현은 사영기하학과 교차비에서 등장함
- \(\Gamma/\Gamma(2)\)
타원 모듈라 j-함수와의 관계==
\(J(\tau)=\frac{4}{27}\frac{(1-\lambda+\lambda^2)^3}{\lambda^2(1-\lambda)^2}\)
(증명)
다음과 같은 함수를 생각하자.
\((\lambda(\tau)+1)( {1\over\lambda(\tau)}+1)({1\over{1-\lambda(\tau)}}+1)( 1-\lambda(\tau)+1)( {\lambda(\tau)\over{\lambda(\tau)-1}}+1)( {{\lambda(\tau)-1}\over\lambda(\tau)})\)
모듈라군에 의한 변환에서 얻은 결과로 이 함수는 모듈라 군(modular group)에 의하여 불변임을 알 수 있다.
special values==
\(\lambda(i\infty)=0\)
\(\lambda(0)=1\)
\(\lambda(1)=\infty\)
\(\lambda(\sqrt{-1})=\frac{1}{2}\)
\(\lambda(\frac {-1+\sqrt{-3}}{2}), \lambda(\frac {1+\sqrt{-3}}{2})\) 는 \(1-\lambda+\lambda^2=0\) 의 두 해
역사
메모
관련된 항목들
수학용어번역==
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- [AHL1979]Lars Ahlfors, Complex Analysis , 3rd edition, McGraw-Hill, 1979
- 7.3.4를 참고
- \(\lambda(\tau)=k^2(\tau)\) 는 타원적분의 modulus라고 불리며, 아벨, 자코비와 후학들(에르미트)에 의해 많이 연구됨
- \(k(\tau)\)에 대해서는 타원적분의 singular value k 참조
- \(k(\tau)\)에 대해서는 타원적분의 singular value k 참조
- 가장 기본적인 모듈라함수로 여겨졌으나, 나중에 \(j\)-불변량(타원 모듈라 j-함수 (elliptic modular function, j-invariant))에 그 자리를 내줌
- level 2 인 congruence 모듈라 군(modular group) \(\Gamma(2)\)에 대한 모듈라 함수가 됨
\(\Gamma(2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{2} \right\}\)
- 바이어슈트라스의 타원함수
바이어슈트라스 타원함수 ℘\(\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}\)
\(\tau=\frac{\omega_2}{\omega_1}\) 로 두면, \(\lambda(\tau)=\frac{e_3-e_2}{e_1-e_2}\)
여기서
\(e_1=\wp(\frac{\omega_1}{2};\omega_1,\omega_2)\)
\(e_2=\wp(\frac{\omega_2}{2};\omega_1,\omega_2)\)
\(e_3=\wp(\frac{\omega_1+\omega_2}{2};\omega_1,\omega_2)\) - \(e_1,e_2,e_3,\infty\) 네 점의 교차비로 이해할 수 있음
- 사영기하학과 교차비 항목 참조
\(z_4=\infty\) 인 경우
\((z_1,z_2;z_3,\infty) = \frac{(z_1-z_3)}{(z_2-z_3)}\)
- 모듈라 군(modular group)에 의한 변환
- 생성원
\(S=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \), \(T=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) - \(T: \tau \to \tau+1\)에 의한 변화
\(\begin{pmatrix} \omega'_2 \\ \omega'_1 \end{pmatrix}=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix} =\begin{pmatrix} \omega_1+\omega_2 \\ \omega_1 \end{pmatrix}\)
\(e_1'=\wp(\frac{\omega_1}{2})=e_1\)
\(e_2'=\wp(\frac{\omega_1+\omega_2}{2})=e_3\)
\(e_3'=\wp(\frac{\omega_2}{2})=e_2\)
\(\lambda(\tau+1)=\frac{e_2-e_3}{e_1-e_3}=\frac{\lambda(\tau)}{\lambda(\tau)-1}\) - \(S: \tau \to -\frac{1}{\tau}\)에 의한 변화
\(\begin{pmatrix} \omega'_2 \\ \omega'_1 \end{pmatrix}=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix} =\begin{pmatrix} -\omega_1 \\ \omega_2 \end{pmatrix}\)
\(e_1'=\wp(\frac{\omega_2}{2})=e_2\)
\(e_2'=\wp(\frac{\omega_1}{2})=e_1\)
\(e_3'=\wp(\frac{\omega_1+\omega_2}{2})=e_3\)
\(\lambda(-\frac{1}{\tau})=\frac{e_3-e_1}{e_2-e_1}=1-\lambda(\tau)\) - 따라서 모듈라 군(modular group)에 의해, 다음과 같은 값을 취할 수 있게 된다
교차비
\( \lambda, {1\over\lambda},{1\over{1-\lambda}}, 1-\lambda, {\lambda\over{\lambda-1}}, {{\lambda-1}\over\lambda}\) - 이러한 표현은 사영기하학과 교차비에서 등장함
- \(\Gamma/\Gamma(2)\)
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- [AHL1979]Lars Ahlfors, Complex Analysis , 3rd edition, McGraw-Hill, 1979
- 7.3.4를 참고