"판별식 (discriminant) 함수와 라마누잔의 타우 함수(tau function)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
44번째 줄: 44번째 줄:
  
 
<h5 style="margin: 0px; line-height: 2em;">라마누잔의 타우 함수</h5>
 
<h5 style="margin: 0px; line-height: 2em;">라마누잔의 타우 함수</h5>
 +
 +
 
  
 
*  discriminant 함수의 푸리에 급수에 등장하는 계수를 라마누잔의 타우함수로 정의함. 즉,<br><math>\Delta(\tau)=q\prod_{n>0}(1-q^n)^{24}= \sum_{n=1}^{\infty}\tau(n)q^n</math><br>
 
*  discriminant 함수의 푸리에 급수에 등장하는 계수를 라마누잔의 타우함수로 정의함. 즉,<br><math>\Delta(\tau)=q\prod_{n>0}(1-q^n)^{24}= \sum_{n=1}^{\infty}\tau(n)q^n</math><br>
54번째 줄: 56번째 줄:
  
 
* <math>|\tau(p)| \leq 2p^{11/2}</math><br>
 
* <math>|\tau(p)| \leq 2p^{11/2}</math><br>
1974<br>
+
1974년 Deligne이 Weil추측을 증명함으로써 해결됨<br>
  
 
 
 
 
63번째 줄: 65번째 줄:
  
 
*  모든 <math>n\in \mathbb{N}</math>에 대하여 <math>\tau(n)\neq 0 </math>이다<br>
 
*  모든 <math>n\in \mathbb{N}</math>에 대하여 <math>\tau(n)\neq 0 </math>이다<br>
 +
*  미해결 무<br>
  
 
 
 
 

2010년 8월 20일 (금) 15:53 판

이 항목의 스프링노트 원문주소

 

 

타원곡선의 discriminant
  • \(\tau\in \mathbb H\) 에 대응되는 타원곡선 \(y^2=4x^3-g_2(\tau)x-g_3(\tau)\) 의 판별식은 다음과 주어짐.
    \(F(\tau)=g_2(\tau)^3-27g_3(\tau)\)
  • 정의에 따라 \(F\)는 weight 12인 모듈라 형식이 됨.
  • 또한 cusp 형식이 됨.
    \(g_2(i\infty)=\frac{4\pi^4}{3}\), \(g_3(i\infty)=\frac{8\pi^6}{27}\) 이므로,
    \(F(i\infty)=(\frac{4\pi^4}{3})^3-27(\frac{8\pi^6}{27})^2=0\)

 

 

정의
  • \(\Delta(\tau)=\frac{F(\tau)}{(2\pi)^{12}}= q-24q+252q^2\cdots\) 를 discriminant 함수의 정의로 함.
  • \(\Delta(\tau)=\frac{1}{1728}(E_4^3-E_6^2)\) 로 표현가능

 

 

모듈라 성질
  • 위에서 이미 언급했듯이, weight 12인 모듈라 형식이 됨
    \(\Delta \left( \frac {a\tau+b} {c\tau+d}\right) = \left(c\tau+d\right)^{12} \Delta(\tau)\)

 

 

무한곱 표현과 데데킨트 에타함수
  • 데데킨트 에타함수
    \(\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})\)
    의 24승으로 주어지는 함수는 weight 12인 cusp 형식이 되므로, discriminant 함수와 같게 됨. 즉,
    \(\Delta(\tau)=\eta(\tau)^{24}= q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots\)

 

라마누잔의 타우 함수

 

  • discriminant 함수의 푸리에 급수에 등장하는 계수를 라마누잔의 타우함수로 정의함. 즉,
    \(\Delta(\tau)=q\prod_{n>0}(1-q^n)^{24}= \sum_{n=1}^{\infty}\tau(n)q^n\)

 

 

라마누잔의 추측
  • \(|\tau(p)| \leq 2p^{11/2}\)
  • 1974년 Deligne이 Weil추측을 증명함으로써 해결됨

 

 

Lehmer의 추측
  • 모든 \(n\in \mathbb{N}\)에 대하여 \(\tau(n)\neq 0 \)이다
  • 미해결 무

 

 

메모
  • Hecke’s theory of Hecke operators
  • Serre’s theory of modular l-adic Galois representations
  • Ramanujan-Petersson Conjectures

 

 

관련된 항목들

 

 

 

사전 형태의 자료

 

 

관련논문
  • The vanishing of Ramanujan’s τ(n)
    • Lehmer, D.H.Duke Math. J. 14, 429–433 (1947)

 

 

 

관련도서

 

 

관련기사