"무리수와 디오판투스 근사"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “==관련도서== * 도서내검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/contentSearch.do?query= * 도서검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/mainSearch.d) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로) |
||
9번째 줄: | 9번째 줄: | ||
는 무한히 많은 유리수 <math>p/q</math>에 의하여 만족된다. | 는 무한히 많은 유리수 <math>p/q</math>에 의하여 만족된다. | ||
− | * 더 나아가 다음이 성립한다(후르비츠 정리)<br> 무리수 <math>\alpha</math> 에 대하여, 부등식 | + | * 더 나아가 다음이 성립한다(후르비츠 정리)<br> 무리수 <math>\alpha</math> 에 대하여, 부등식:<math>|\alpha-\frac{p}{q}|<\frac{1}{\sqrt{5}{q^2}}</math><br> 는 무한히 많은 유리수<math>p/q</math> 에 의하여 만족된다. (하지만 여기서 <math>\sqrt{5}</math> 는 더 큰 수로 대체될 수 없다.)<br> |
* [[연분수와 유리수 근사|연분수]] 항목 참조<br> | * [[연분수와 유리수 근사|연분수]] 항목 참조<br> | ||
17번째 줄: | 17번째 줄: | ||
* 리우빌 정리 (1844) <br> | * 리우빌 정리 (1844) <br> | ||
− | 무리수이면서 차수가 d인 대수적수 <math>\alpha</math> 와 임의의 양수 <math>\epsilon>0</math>에 대하여, 부등식 | + | 무리수이면서 차수가 d인 대수적수 <math>\alpha</math> 와 임의의 양수 <math>\epsilon>0</math>에 대하여, 부등식 :<math> \vert \alpha - \frac{p}{q} \vert < \frac{1}{q^{d+\epsilon}}</math><br> 의 유리수해 <math>p/q</math>의 개수는 유한하다 |
− | * 리우빌 정리의 또다른 버전<br> 무리수이면서 차수가 d인 대수적수 <math>\alpha</math> 에 대하여, 적당한 상수 <math>c(\alpha)>0</math>가 존재하여, 모든 유리수 <math>p/q</math>에 대하여 다음 부등식이 만족된다. | + | * 리우빌 정리의 또다른 버전<br> 무리수이면서 차수가 d인 대수적수 <math>\alpha</math> 에 대하여, 적당한 상수 <math>c(\alpha)>0</math>가 존재하여, 모든 유리수 <math>p/q</math>에 대하여 다음 부등식이 만족된다. :<math> \vert \alpha - \frac{p}{q} \vert > \frac{c(\alpha)}{q^{d}}</math><br> |
− | * 이 정리를 사용하여, 리우빌 상수 c가 초월수임을 증명할 수 있다 | + | * 이 정리를 사용하여, 리우빌 상수 c가 초월수임을 증명할 수 있다:<math>c = \sum_{j=1}^\infty 10^{-j!} = 0.110001000000000000000001000\ldots</math> |
2013년 1월 12일 (토) 09:41 판
개요
디리클레 근사정리(Dirichlet's approximation theorem)
- 디리클레 근사정리(Dirichlet's approximation theorem)에서 가져옴
무리수 \(\alpha\) 에 대하여, 부등식 \[|\alpha-\frac{p}{q}|<\frac{1}{q^2}\]
는 무한히 많은 유리수 \(p/q\)에 의하여 만족된다.
- 더 나아가 다음이 성립한다(후르비츠 정리)
무리수 \(\alpha\) 에 대하여, 부등식\[|\alpha-\frac{p}{q}|<\frac{1}{\sqrt{5}{q^2}}\]
는 무한히 많은 유리수\(p/q\) 에 의하여 만족된다. (하지만 여기서 \(\sqrt{5}\) 는 더 큰 수로 대체될 수 없다.) - 연분수 항목 참조
리우빌 정리
- 리우빌 정리 (1844)
무리수이면서 차수가 d인 대수적수 \(\alpha\) 와 임의의 양수 \(\epsilon>0\)에 대하여, 부등식 \[ \vert \alpha - \frac{p}{q} \vert < \frac{1}{q^{d+\epsilon}}\]
의 유리수해 \(p/q\)의 개수는 유한하다
- 리우빌 정리의 또다른 버전
무리수이면서 차수가 d인 대수적수 \(\alpha\) 에 대하여, 적당한 상수 \(c(\alpha)>0\)가 존재하여, 모든 유리수 \(p/q\)에 대하여 다음 부등식이 만족된다. \[ \vert \alpha - \frac{p}{q} \vert > \frac{c(\alpha)}{q^{d}}\]
- 이 정리를 사용하여, 리우빌 상수 c가 초월수임을 증명할 수 있다\[c = \sum_{j=1}^\infty 10^{-j!} = 0.110001000000000000000001000\ldots\]
Thue-Siegel-Roth 정리
주어진 \(\epsilon>0\)에 대하여, 무리수이면서 대수적인수 \(\alpha\) 에 대하여, 부등식 \[\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^{2 + \epsilon}}\] 의 유리수해 \(p/q\) 의 개수는 유한하다
역사
- 1844 리우빌
- 1909 Thue
- 1921 지겔
- 1955 Roth (1958년 필즈메달)
- http://www.google.com/search?hl=en&tbs=tl:1&q=diophantine+approximation
- http://www.google.com/search?hl=en&tbs=tl:1&q=
- 수학사연표
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Diophantine_approximation
- http://en.wikipedia.org/wiki/Liouville_number
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Diophantine Approximation: historical survey
- From Introduction to Diophantine methods course by Michel Waldschmidt.
- Introduction to Diophantine methods: irrationality and transcendence
- http://www.jstor.org/action/doBasicSearch?Query=
- http://www.ams.org/mathscinet
- http://dx.doi.org/