"오일러 치환"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
99번째 줄: | 99번째 줄: | ||
==관련도서== | ==관련도서== | ||
* Courant, Richard. 1988. Differential and Integral Calculus. John Wiley & Sons. | * Courant, Richard. 1988. Differential and Integral Calculus. John Wiley & Sons. | ||
+ | [[분류:적분]] |
2013년 2월 11일 (월) 08:12 판
개요
- \(R(x,\sqrt{ax^2+bx+c})\)형태의 적분을 유리함수의 적분으로 바꾸는 변수치환 \(x=x(t)\)
- 유리함수의 부정적분은 인수분해를 통하여 가능하므로, 이러한 형태의 적분 문제를 완전히 이해하는 셈이 된다
- 이차곡선\(y^2=ax^2+bx+c\)를 유리함수 \(f,g\)를 사용하여 \(x=f(t), y=g(t)\)로 매개화할 수 있기 때문에 가능하다
- 삼각치환이 잘 작동하는 이유를 설명해준다
- 타원적분론을 공부하기 전에 이해하면 도움이 된다
오일러 치환
제1오일러 치환
- \(a>0\) 일때, \(\sqrt{ax^2+bx+c}=t-\sqrt{a}x\) 로 치환
- 예\[\int\sqrt{x^2-4}\,dx\]\[\sqrt{x^2-4}=t-x\]\[x=\frac{4+t^2}{2t}\]\[\int \frac{2t^4-16t^2+32}{8t^3}\,dt\]
제2오일러 치환
- \(c>0\) 일때, \(\sqrt{ax^2+bx+c}=xt+\sqrt{c}\) 로 치환
- 예\[\int \frac{\sqrt{1-x^2}}{x}\,dx\]\[\sqrt{1-x^2}=xt+1\]\[x=\frac{2t}{t^2+1}\]\[\int \frac{1+2 t^2-3 t^4}{t \left(1+t^2\right)^2}\,dt\]
제3오일러 치환
- \(ax^2+bx+c=0\)가 두 실근u,v를 가질때, \(\sqrt{ax^2+bx+c}=t(x-u)\)로 치환
- 예\[\int\sqrt{x^2-4}\,dx\]\[\sqrt{x^2-4}=t(x-2)\]\[x=\frac{2t^2+2}{t^2-1}\]\[\int \frac{2t^4-16t^2+32}{8t^3}\,dt\]
타원적분
- 유리함수 R에 대한 \(R(x,\sqrt{x^3+ax^2+bx+c})\) 의 부정적분\[\int R (x,\sqrt{x^3+ax^2+bx+c})\,dx\]
단, \(x^3+ax^2+bx+c\)는 서로 다른 해를 가짐 - 곡선 \(y^2=x^3+ax^2+bx+c\)는 위에서처럼 적당한 유리함수 \(x=f(t), y=g(t)\) 로 매개화할 수 없기 때문에, 이야기가 달라지게 된다
- 타원적분
역사
메모
- 미적분학은 사소하지 않다
- http://www.goiit.com/posts/list/integration-euler-s-substitution-354.htm
- http://pauli.uni-muenster.de/~munsteg/arnold.html
- 삼각치환
관련된 항목들
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://planetmath.org/encyclopedia/EulersSubstitutionsForIntegration.html
관련도서
- Courant, Richard. 1988. Differential and Integral Calculus. John Wiley & Sons.