"숫자 67"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
1번째 줄: 1번째 줄:
==이 항목의 스프링노트 원문주소==
 
 
* [[숫자 67]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
93번째 줄: 85번째 줄:
 
 
 
 
  
==수학용어번역==
 
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
  
 
 
 
 
109번째 줄: 93번째 줄:
 
* [http://en.wikipedia.org/wiki/67_%28number%29 http://en.wikipedia.org/wiki/67_(number)]
 
* [http://en.wikipedia.org/wiki/67_%28number%29 http://en.wikipedia.org/wiki/67_(number)]
 
* http://en.wikipedia.org/wiki/Heegner_number
 
* http://en.wikipedia.org/wiki/Heegner_number
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=67
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
 
 
 
 
==관련논문==
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://dx.doi.org/
 
  
 
 
 
 
 
 
  
 
 
 
 
136번째 줄: 104번째 줄:
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=67
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=67
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
==블로그==
 

2013년 3월 14일 (목) 00:37 판

개요

  • 복소 이차 수체 \(\mathbb{Q}(\sqrt{-67})\)의  class number 는 1이다
  • \(\mathbb{Z}[\frac{1+\sqrt{-67}}{2}]\) 는 UFD 이다
  • 소수이며, 비정규소수이다

 

 

class number 1

  • 복소 이차 수체 \(\mathbb{Q}(\sqrt{-d})\) 가 class number 1인 경우는 다음 9가지가 있다
    • \(d=1,2,3,7,11,19,43,67,163\)
  • 이로 인하여 여러가지 흥미로운 정수론적 성질을 갖게 된다
  • 가우스의 class number one 문제 항목 참조

 

 

오일러의 소수생성다항식

 

 

라마누잔 수

 

 

 

비정규소수

  • 67은 세번째로 작은 비정규소수
  • 베르누이 수\[B_{58}=\frac{84483613348880041862046775994036021}{354}\]
  • 67은 \(B_{58}\)의 분자 84483613348880041862046775994036021를 나누는 비정규소수이다

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 


 

사전 형태의 자료

 

 

 

관련기사