"Q-초기하급수의 점근 급수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==개요== | ==개요== | ||
53번째 줄: | 45번째 줄: | ||
==관련된 항목들== | ==관련된 항목들== | ||
− | * [[로저스 다이로그 함수 (Rogers' | + | * [[로저스 다이로그 함수 (Rogers' dilogarithm)]] |
62번째 줄: | 54번째 줄: | ||
* https://docs.google.com/file/d/0B8XXo8Tve1cxODk1ZjBiYWEtYjMyOS00MDdmLTg1ZjItMTJhOTA0MzZmYmY5/edit | * https://docs.google.com/file/d/0B8XXo8Tve1cxODk1ZjBiYWEtYjMyOS00MDdmLTg1ZjItMTJhOTA0MzZmYmY5/edit | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
111번째 줄: | 66번째 줄: | ||
* '''[McIntosh1995]'''[http://jlms.oxfordjournals.org/cgi/content/abstract/51/1/120 Some Asymptotic Formulae for q-Hypergeometric Series] Richard J. McIntosh, Journal of the London Mathematical Society 1995 51(1):120-136 | * '''[McIntosh1995]'''[http://jlms.oxfordjournals.org/cgi/content/abstract/51/1/120 Some Asymptotic Formulae for q-Hypergeometric Series] Richard J. McIntosh, Journal of the London Mathematical Society 1995 51(1):120-136 | ||
− | |||
− | |||
− | |||
− | |||
[[분류:q-급수]] | [[분류:q-급수]] |
2013년 3월 14일 (목) 09:44 판
개요
- \(a>0,x>0,b\in\mathbb{R}\)라 두자
- z>0는 방정식 \(1-x=zx^{a}\) 의 해라 하자.
- 다음 근사식이 성립함 [McIntosh1995] \[\sum_{n=0}^{\infty}\frac{z^nq^{\frac{a}{2}n^2+bn}}{(q)_n}\sim \frac{x^b}{\sqrt{x+a(1-x)}} \exp (-\frac{1}{\log q}\{\operatorname{Li}_2(zx^{a})+\frac{a}{2}\log^2 x\})\] 또는 \[\sum_{n=0}^{\infty}\frac{z^nq^{\frac{a}{2}n^2+bn}}{(q)_n}\sim \frac{x^b}{\sqrt{x+a(1-x)}} \exp (\frac{L(1-x)}{t})\] 이 때, \(q=e^{-t}\).
예
- A=1/2 (3,5) minimal model\[\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}}} {(q;q)_n}\sim \frac{2}{\sqrt{5-\sqrt{5}}}\exp(\frac{\pi^2}{10t}-\frac{t}{40})+o(t^5)\]\[\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}+\frac{n}{2}}} {(q;q)_n} \sim \frac{2}{\sqrt{5+\sqrt{5}}}\exp(\frac{\pi^2}{10t}+\frac{t}{40})+o(t^5)\]
- A=1 (3,4) minimal model\[\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})\]\[2\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n-1)/2}}{(q)_n}\sim \sqrt{2}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\]\[\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\]
- A=2 (2,5) minimal model 로저스-라마누잔 항등식\[\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} \sim \sqrt\frac{2}{5+\sqrt{5}}\exp(\frac{\pi^2}{15t}+\frac{11t}{60})+o(1)\]\[\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} \sim \sqrt\frac{2}{5-\sqrt{5}}\exp(\frac{\pi^2}{15t}-\frac{t}{60})+o(1)\]
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
매스매티카 파일 및 계산 리소스
리뷰논문, 에세이, 강의노트
관련논문
- [McIntosh1995]Some Asymptotic Formulae for q-Hypergeometric Series Richard J. McIntosh, Journal of the London Mathematical Society 1995 51(1):120-136