"Q-초기하급수의 점근 급수"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
4번째 줄: | 4번째 줄: | ||
* $x>0$는 방정식 <math>1-x=x^{a}</math> 의 해라 하자. | * $x>0$는 방정식 <math>1-x=x^{a}</math> 의 해라 하자. | ||
* <math>q=e^{-t}</math> 이고 $t\to 0$ 일 때, 다음의 점근 급수를 얻는다 '''[McIntosh1995]''' | * <math>q=e^{-t}</math> 이고 $t\to 0$ 일 때, 다음의 점근 급수를 얻는다 '''[McIntosh1995]''' | ||
− | :<math>\log \sum_{n=0}^{\infty}\frac{q^{\frac{a}{2}n^2+bn}}{(q)_n}\sim \log \left(\frac{x^b}{\sqrt{x+a(1-x)}}\right)+\frac | + | :<math>\log \sum_{n=0}^{\infty}\frac{q^{\frac{a}{2}n^2+bn}}{(q)_n}\sim \log \left(\frac{x^b}{\sqrt{x+a(1-x)}}\right)+\frac{\operatorname{Li}_2(x^{a})+\frac{a}{2}\log^2 x}{t}</math> 또는 |
− | :<math>\log \sum_{n=0}^{\infty}\frac{q^{\frac{a}{2}n^2+bn}}{(q)_n}\sim \log \left(\frac{x^b}{\sqrt{x+a(1-x)}}\right) + | + | :<math>\log \sum_{n=0}^{\infty}\frac{q^{\frac{a}{2}n^2+bn}}{(q)_n}\sim \log \left(\frac{x^b}{\sqrt{x+a(1-x)}}\right) +\frac{L(1-x)}{t}</math> |
여기서 $L$은 [[로저스 다이로그 함수 (Rogers' dilogarithm)]] | 여기서 $L$은 [[로저스 다이로그 함수 (Rogers' dilogarithm)]] | ||
2013년 7월 12일 (금) 12:57 판
개요
- \(a>0,b\in\mathbb{R}\)라 두자
- $x>0$는 방정식 \(1-x=x^{a}\) 의 해라 하자.
- \(q=e^{-t}\) 이고 $t\to 0$ 일 때, 다음의 점근 급수를 얻는다 [McIntosh1995]
\[\log \sum_{n=0}^{\infty}\frac{q^{\frac{a}{2}n^2+bn}}{(q)_n}\sim \log \left(\frac{x^b}{\sqrt{x+a(1-x)}}\right)+\frac{\operatorname{Li}_2(x^{a})+\frac{a}{2}\log^2 x}{t}\] 또는 \[\log \sum_{n=0}^{\infty}\frac{q^{\frac{a}{2}n^2+bn}}{(q)_n}\sim \log \left(\frac{x^b}{\sqrt{x+a(1-x)}}\right) +\frac{L(1-x)}{t}\] 여기서 $L$은 로저스 다이로그 함수 (Rogers' dilogarithm)
예
- $A=1/2$인 경우
\[\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}}} {(q;q)_n}\sim \frac{2}{\sqrt{5-\sqrt{5}}}\exp(\frac{\pi^2}{10t}-\frac{t}{40})\] \[\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}+\frac{n}{2}}} {(q;q)_n} \sim \frac{2}{\sqrt{5+\sqrt{5}}}\exp(\frac{\pi^2}{10t}+\frac{t}{40})\]
- $A=1$인 경우 베버(Weber) 모듈라 함수
\[\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})\]\[2\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n-1)/2}}{(q)_n}\sim \sqrt{2}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\]\[\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\]
- $A=2$인 경우 로저스-라마누잔 항등식
\[\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} \sim \sqrt\frac{2}{5+\sqrt{5}}\exp(\frac{\pi^2}{15t}+\frac{11t}{60})\] \[\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} \sim \sqrt\frac{2}{5-\sqrt{5}}\exp(\frac{\pi^2}{15t}-\frac{t}{60})\]
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
매스매티카 파일 및 계산 리소스
리뷰논문, 에세이, 강의노트
관련논문
- [McIntosh1995]Some Asymptotic Formulae for q-Hypergeometric Series Richard J. McIntosh, Journal of the London Mathematical Society 1995 51(1):120-136