"엡슈타인 제타함수"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) (→관련논문) |
Pythagoras0 (토론 | 기여) |
||
16번째 줄: | 16번째 줄: | ||
:<math>E(\tau,s)=(\frac{\sqrt{|\Delta|}}{2})^s \zeta_Q(s)</math> | :<math>E(\tau,s)=(\frac{\sqrt{|\Delta|}}{2})^s \zeta_Q(s)</math> | ||
:<math>\zeta_Q(s) = (\frac{2}{\sqrt{|\Delta|}})^s E(\tau,s)</math> | :<math>\zeta_Q(s) = (\frac{2}{\sqrt{|\Delta|}})^s E(\tau,s)</math> | ||
− | + | ;정리 | |
$$ | $$ | ||
\begin{aligned} | \begin{aligned} | ||
\zeta_Q(s) & = (\frac{2}{\sqrt{|\Delta|}})\left({\pi\over s-1} + 2\pi\gamma-2\pi\log(2)-2\pi\log(\sqrt{y}|\eta(\tau)|^2)\right)+O(s-1) \\ | \zeta_Q(s) & = (\frac{2}{\sqrt{|\Delta|}})\left({\pi\over s-1} + 2\pi\gamma-2\pi\log(2)-2\pi\log(\sqrt{y}|\eta(\tau)|^2)\right)+O(s-1) \\ | ||
− | {}&=(\frac{2}{\sqrt{|\Delta|}})({\pi\over s-1} + 2\pi\gamma-2\pi\log(2)-2\pi\log(\sqrt{|\Delta|}))- \frac{2\cdot 2\pi}{\sqrt{|\Delta|}}\log \frac{|\eta(\tau)|^2}{\sqrt{2a}}+O(s-1) | + | {}&=(\frac{2}{\sqrt{|\Delta|}})\left({\pi\over s-1} + 2\pi\gamma-2\pi\log(2)-2\pi\log(\sqrt{|\Delta|})\right)- \frac{2\cdot 2\pi}{\sqrt{|\Delta|}}\log \frac{|\eta(\tau)|^2}{\sqrt{2a}}+O(s-1) |
\end{aligned} | \end{aligned} | ||
$$ | $$ | ||
여기서 :<math>\tau= {-b\over 2a} + i {\sqrt{|\Delta|}\over 2a},y = {\sqrt{|\Delta|}\over 2a}</math> | 여기서 :<math>\tau= {-b\over 2a} + i {\sqrt{|\Delta|}\over 2a},y = {\sqrt{|\Delta|}\over 2a}</math> | ||
− | + | * [[크로네커 극한 공식]] 참조 | |
+ | |||
− | + | ;따름정리 | |
판별식이 같은 즉 <math>m=b_1^2-a_1c_1=b_2^2-a_2c_2</math> 인 두 양의정부호 이차형식 <math>Q_1(X,Y)=a_1X^2+2b_1XY+c_1Y^2</math>와 <math>Q_2(X,Y)=a_2X^2+2b_2XY+c_2Y^2</math> 에 대하여, 다음이 성립한다. | 판별식이 같은 즉 <math>m=b_1^2-a_1c_1=b_2^2-a_2c_2</math> 인 두 양의정부호 이차형식 <math>Q_1(X,Y)=a_1X^2+2b_1XY+c_1Y^2</math>와 <math>Q_2(X,Y)=a_2X^2+2b_2XY+c_2Y^2</math> 에 대하여, 다음이 성립한다. | ||
− | |||
− | |||
$$ | $$ | ||
\begin{aligned} | \begin{aligned} | ||
− | \lim_{s\to1^{+}}\zeta_{Q_1}(s)-\zeta_{Q_2}(s) & = \lim_{s\to1^{+}}\sum_{(X,Y)\ne (0,0)}\ | + | \lim_{s\to1^{+}}\zeta_{Q_1}(s)-\zeta_{Q_2}(s) & = \lim_{s\to1^{+}}\sum_{(X,Y)\ne (0,0)}\left(\frac{1}{(a_1X^2+2b_1XY+c_1y^2)^s}-\frac{1}{(a_2X^2+2b_2XY+c_2y^2)^s}\right)\\ |
{} & =\frac{2\pi}{\sqrt{m}}\ln\{ \sqrt{\frac{a_1}{a_2}}|\frac{\eta(\omega)}{\eta(\tau)}|^2\} | {} & =\frac{2\pi}{\sqrt{m}}\ln\{ \sqrt{\frac{a_1}{a_2}}|\frac{\eta(\omega)}{\eta(\tau)}|^2\} | ||
\end{aligned} | \end{aligned} | ||
$$ | $$ | ||
여기서 <math>\tau=\frac{-b_1+i\sqrt{m}}{a_1}</math>, <math>\omega=\frac{-b_2+i\sqrt{m}}{a_2}</math> | 여기서 <math>\tau=\frac{-b_1+i\sqrt{m}}{a_1}</math>, <math>\omega=\frac{-b_2+i\sqrt{m}}{a_2}</math> | ||
+ | |||
==라마누잔 class invariants 와의 관계== | ==라마누잔 class invariants 와의 관계== | ||
− | + | * 두 이차형식 <math>Q_1(X,Y)=aX^2+2cY^2</math>와 <math>Q_2(X,Y)=2aX^2+cY^2</math>, <math>m=2ac</math>에 대하여 위의 따름정리를 적용하면, | |
− | <math>Q_1(X,Y)=aX^2+2cY^2</math>와 <math>Q_2(X,Y)=2aX^2+cY^2</math>, <math>m=2ac</math>에 대하여 위의 따름정리를 적용하면, | + | :<math>\lim_{s\to1^{+}}\sum_{(X,Y)\ne (0,0)}\left(\frac{1}{(aX^2+2cy^2)^s}-\frac{1}{(2aX^2+cy^2)^s}\right)=\frac{2\pi}{\sqrt{m}}\ln\{\sqrt{\frac{a}{2a}}|\frac{\eta(\omega)}{\eta(\tau)}|^{2}\}=\frac{2\pi}{\sqrt{m}}\ln\{ \sqrt{\frac{1}{2}}|\frac{\eta(\frac{\tau}{2})}{\eta(\tau)}|^{2}\}=\frac{2\pi}{\sqrt{m}}\ln\{ \sqrt{\frac{1}{2}}(2^{1/4}g_{\frac{2c}{a}})^{2}\}=\frac{4\pi}{\sqrt{m}}\ln g_{\frac{2c}{a}}</math> |
− | + | 여기서 <math>\tau=i\sqrt\frac{2c}{a}</math>, <math>\omega=i\sqrt{\frac{c}{2a}}=\frac{\tau}{2}</math> | |
− | + | :<math>g_n:=2^{-1/4}f_1(\sqrt{-n})=2^{-1/4}\frac{\eta(\frac{\sqrt{-n}}{2})}{\eta(\sqrt{-n})}</math> | |
− | + | * [[라마누잔의 class invariants]] 참조 | |
− | <math>\lim_{s\to1^{+}}\sum_{(X,Y)\ne (0,0)}\ | ||
− | |||
− | |||
− | * [[라마누잔의 class invariants]] 참조 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
72번째 줄: | 52번째 줄: | ||
==관련된 항목들== | ==관련된 항목들== | ||
− | * [[이차 수체에 대한 디리클레 class number 공식 |이차 수체에 대한 디리클레 class number 공식]] | + | * [[이차 수체에 대한 디리클레 class number 공식 |이차 수체에 대한 디리클레 class number 공식]] |
− | * [[모든 자연수의 곱과 리만제타함수]] | + | * [[모든 자연수의 곱과 리만제타함수]] |
− | * [[Chowla-셀베르그 공식]] | + | * [[Chowla-셀베르그 공식]] |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ==사전 형태의 자료== | |
− | |||
− | |||
* http://en.wikipedia.org/wiki/Epstein_zeta_function | * http://en.wikipedia.org/wiki/Epstein_zeta_function | ||
* http://en.wikipedia.org/wiki/Kronecker_limit_formula | * http://en.wikipedia.org/wiki/Kronecker_limit_formula | ||
− | |||
* http://mathworld.wolfram.com/EpsteinZetaFunction.html | * http://mathworld.wolfram.com/EpsteinZetaFunction.html | ||
− | |||
− | |||
− | |||
− | |||
− | |||
2013년 12월 29일 (일) 19:05 판
개요
- 실해석적 아이젠슈타인 급수
- 라마누잔의 class invariants를 계산하는데 사용가능하며, 왜 실수이차체의 unit 이 등장하는지를 설명해줌
이차형식과 제타함수
- $\tau=x+iy\in \mathbb{C}$에 대하여, \(|m\tau+n|^{2}=m^2 (x^2+y^2)+2 m n x+n^2\)
- 양의 정부호인 정수계수이차형식 \(Q(X,Y)=aX^2+bXY+cY^2\) (즉\(a>0\)이고 \(\Delta=b^2-4ac<0\)) 에 대하여 Epstein 제타함수를 다음과 같이 정의
\[\zeta_Q(s) =\sum_{(X,Y)\ne (0,0)}\frac{1}{(aX^2+bXY+cy^2)^s}\]
- \(\tau= {-b\over 2a} + i {\sqrt{|\Delta|}\over 2a}\) 인 경우 ( \(-\Delta=|\Delta|\) )
- 실해석적 아이젠슈타인 급수과 다음과 같은 관계
\[E(\tau,s)=(\frac{\sqrt{|\Delta|}}{2})^s \zeta_Q(s)\] \[\zeta_Q(s) = (\frac{2}{\sqrt{|\Delta|}})^s E(\tau,s)\]
- 정리
$$ \begin{aligned} \zeta_Q(s) & = (\frac{2}{\sqrt{|\Delta|}})\left({\pi\over s-1} + 2\pi\gamma-2\pi\log(2)-2\pi\log(\sqrt{y}|\eta(\tau)|^2)\right)+O(s-1) \\ {}&=(\frac{2}{\sqrt{|\Delta|}})\left({\pi\over s-1} + 2\pi\gamma-2\pi\log(2)-2\pi\log(\sqrt{|\Delta|})\right)- \frac{2\cdot 2\pi}{\sqrt{|\Delta|}}\log \frac{|\eta(\tau)|^2}{\sqrt{2a}}+O(s-1) \end{aligned} $$ 여기서 \[\tau= {-b\over 2a} + i {\sqrt{|\Delta|}\over 2a},y = {\sqrt{|\Delta|}\over 2a}\]
- 크로네커 극한 공식 참조
- 따름정리
판별식이 같은 즉 \(m=b_1^2-a_1c_1=b_2^2-a_2c_2\) 인 두 양의정부호 이차형식 \(Q_1(X,Y)=a_1X^2+2b_1XY+c_1Y^2\)와 \(Q_2(X,Y)=a_2X^2+2b_2XY+c_2Y^2\) 에 대하여, 다음이 성립한다. $$ \begin{aligned} \lim_{s\to1^{+}}\zeta_{Q_1}(s)-\zeta_{Q_2}(s) & = \lim_{s\to1^{+}}\sum_{(X,Y)\ne (0,0)}\left(\frac{1}{(a_1X^2+2b_1XY+c_1y^2)^s}-\frac{1}{(a_2X^2+2b_2XY+c_2y^2)^s}\right)\\ {} & =\frac{2\pi}{\sqrt{m}}\ln\{ \sqrt{\frac{a_1}{a_2}}|\frac{\eta(\omega)}{\eta(\tau)}|^2\} \end{aligned} $$ 여기서 \(\tau=\frac{-b_1+i\sqrt{m}}{a_1}\), \(\omega=\frac{-b_2+i\sqrt{m}}{a_2}\)
라마누잔 class invariants 와의 관계
- 두 이차형식 \(Q_1(X,Y)=aX^2+2cY^2\)와 \(Q_2(X,Y)=2aX^2+cY^2\), \(m=2ac\)에 대하여 위의 따름정리를 적용하면,
\[\lim_{s\to1^{+}}\sum_{(X,Y)\ne (0,0)}\left(\frac{1}{(aX^2+2cy^2)^s}-\frac{1}{(2aX^2+cy^2)^s}\right)=\frac{2\pi}{\sqrt{m}}\ln\{\sqrt{\frac{a}{2a}}|\frac{\eta(\omega)}{\eta(\tau)}|^{2}\}=\frac{2\pi}{\sqrt{m}}\ln\{ \sqrt{\frac{1}{2}}|\frac{\eta(\frac{\tau}{2})}{\eta(\tau)}|^{2}\}=\frac{2\pi}{\sqrt{m}}\ln\{ \sqrt{\frac{1}{2}}(2^{1/4}g_{\frac{2c}{a}})^{2}\}=\frac{4\pi}{\sqrt{m}}\ln g_{\frac{2c}{a}}\] 여기서 \(\tau=i\sqrt\frac{2c}{a}\), \(\omega=i\sqrt{\frac{c}{2a}}=\frac{\tau}{2}\) \[g_n:=2^{-1/4}f_1(\sqrt{-n})=2^{-1/4}\frac{\eta(\frac{\sqrt{-n}}{2})}{\eta(\sqrt{-n})}\]
관련된 항목들
사전 형태의 자료
- http://en.wikipedia.org/wiki/Epstein_zeta_function
- http://en.wikipedia.org/wiki/Kronecker_limit_formula
- http://mathworld.wolfram.com/EpsteinZetaFunction.html
관련논문
- A Proof of the Classical Kronecker Limit Formula
- Takuro SHINTANI. Source: Tokyo J. of Math. Volume 03, Number 2 (1980), 191-199
- A systematic approach to the evaluation of $\sum_{m,n>0}(am^2+bmn+cn^2)^{-s}$
- I J Zucker et al 1976 J. Phys. A: Math. Gen. 9 1215-1225
- On Epstein's Zeta-function
- S. Chowla; A. Selberg, J. reine angew. Math. 227, 86-110, 1967
- On Epstein's Zeta Function (I)
- S. Chowla and A. Selberg Proc Natl Acad Sci U S A. 1949 July; 35(7): 371–374
- On Epstein's Zeta Function
- Max F. Deuring, The Annals of Mathematics, Second Series, Vol. 38, No. 3 (Jul., 1937), pp. 585-593