"지겔 모듈라 형식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
22번째 줄: 22번째 줄:
 
* Vinberg, E. 2013. “On the Algebra of Siegel Modular Forms of Genus 2.” Transactions of the Moscow Mathematical Society 74: 1–13. doi:10.1090/S0077-1554-2014-00217-X.
 
* Vinberg, E. 2013. “On the Algebra of Siegel Modular Forms of Genus 2.” Transactions of the Moscow Mathematical Society 74: 1–13. doi:10.1090/S0077-1554-2014-00217-X.
 
* Katsurada, Hidenori. "An explicit formula for Siegel series." American journal of mathematics (1999): 415-452.
 
* Katsurada, Hidenori. "An explicit formula for Siegel series." American journal of mathematics (1999): 415-452.
* Katsurada, Hidenori. 1997. “An Explicit Formula for the Fourier Coefficients of Siegel-Eisenstein Series of Degree $3$.Nagoya Mathematical Journal 146: 199–223.
+
* Katsurada, Hidenori. "An explicit formula for the Fourier coefficients of Siegel-Eisenstein series of degree $3$." Nagoya Mathematical Journal 146 (1997): 199-223.
 
 
  
  

2014년 6월 28일 (토) 04:42 판

관련된 항목들


계산 리소스


사전 형태의 자료


리뷰, 에세이, 강의노트


관련논문

  • Vinberg, E. 2013. “On the Algebra of Siegel Modular Forms of Genus 2.” Transactions of the Moscow Mathematical Society 74: 1–13. doi:10.1090/S0077-1554-2014-00217-X.
  • Katsurada, Hidenori. "An explicit formula for Siegel series." American journal of mathematics (1999): 415-452.
  • Katsurada, Hidenori. "An explicit formula for the Fourier coefficients of Siegel-Eisenstein series of degree $3$." Nagoya Mathematical Journal 146 (1997): 199-223.


관련도서

  • Andrianov, Anatoli. Introduction to Siegel Modular Forms and Dirichlet Series: Introduction to Siegel Modular Forms and Dirichlet Series. Springer, 2010.
  • Klingen, Helmut. Introductory Lectures on Siegel Modular Forms. Cambridge University Press, 1990.
  • Maass, Lectures on Siegel's Modular Functions