"J-불변량과 모듈라 다항식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
32번째 줄: 32번째 줄:
  
 
==관련논문==
 
==관련논문==
 +
* Sutherland, Andrew V. “On the Evaluation of Modular Polynomials.” arXiv:1202.3985 [cs, Math], February 17, 2012. doi:10.2140/obs.2013.1.531.
 
* Cohen, Paula. 1984. “On the Coefficients of the Transformation Polynomials for the Elliptic Modular Function.” Mathematical Proceedings of the Cambridge Philosophical Society 95 (3): 389–402. doi:http://dx.doi.org/10.1017/S0305004100061697.
 
* Cohen, Paula. 1984. “On the Coefficients of the Transformation Polynomials for the Elliptic Modular Function.” Mathematical Proceedings of the Cambridge Philosophical Society 95 (3): 389–402. doi:http://dx.doi.org/10.1017/S0305004100061697.
 
* Yui, Noriko. 1978. “Explicit Form of the Modular Equation.” Journal Für Die Reine Und Angewandte Mathematik 299/300: 185–200. http://dx.doi.org/10.1515/crll.1978.299-300.185
 
* Yui, Noriko. 1978. “Explicit Form of the Modular Equation.” Journal Für Die Reine Und Angewandte Mathematik 299/300: 185–200. http://dx.doi.org/10.1515/crll.1978.299-300.185
 
* Herrmann, Oskar. 1975. “Über Die Berechnung Der Fourierkoeffizienten Der Funktion $j(\tau )$.” Journal Für Die Reine Und Angewandte Mathematik 274/275: 187–195. http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002190532&IDDOC=253998
 
* Herrmann, Oskar. 1975. “Über Die Berechnung Der Fourierkoeffizienten Der Funktion $j(\tau )$.” Journal Für Die Reine Und Angewandte Mathematik 274/275: 187–195. http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002190532&IDDOC=253998

2014년 10월 14일 (화) 00:41 판

개요

Z}}[x,y]$이 존재하며, 이 때 차수는 $x,y$ 각각에 대하여 $\psi(n)=n\prod_{p|n}(1+1/p)$로 주어진다


  • $n=2$인 경우

$$ \Phi_2(x,y)=x^3+y^3-x^2 y^2+1488 (x^2 y + x y^2)-162000 (x^2+y^2) +40773375 x y+8748000000 (x + y)-157464000000000 $$

  • $n=3$인 경우

$$ \begin{aligned} \Phi_2(x,y) &=x^4+y^4-x^3 y^3+36864000 \left(x^3+y^3\right)-1069956 \left(x^3 y+x y^3\right)+2587918086 x^2 y^2 \\ &+452984832000000 \left(x^2+y^2\right)+8900222976000 \left(x^2 y+x y^2\right)+2232 \left(x^3 y^2+x^2 y^3\right) \\ &-770845966336000000 x y+1855425871872000000000 (x+y) \end{aligned} $$


매스매티카 파일 및 계산 리소스


관련도서


관련논문