"가우스 합"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
6번째 줄: 6번째 줄:
  
 
 
 
 
 +
 +
<h5>정17각형의 작도 과정에서 나타나는 가우스합</h5>
  
 
* <math>\zeta=e^{2\pi i \over 17}</math>  로 두자. 이 값을 대수적으로 구하는 것이 목표.
 
* <math>\zeta=e^{2\pi i \over 17}</math>  로 두자. 이 값을 대수적으로 구하는 것이 목표.
84번째 줄: 86번째 줄:
  
 
* [http://ko.wikipedia.org/wiki/%EA%B0%80%EC%9A%B0%EC%8A%A4%ED%95%A9 http://ko.wikipedia.org/wiki/가우스합]
 
* [http://ko.wikipedia.org/wiki/%EA%B0%80%EC%9A%B0%EC%8A%A4%ED%95%A9 http://ko.wikipedia.org/wiki/가우스합]
* http://en.wikipedia.org/wiki/
+
* http://en.wikipedia.org/wiki/Quadratic_Gauss_sum
* http://en.wikipedia.org/wiki/Quadratic_Gauss_sum<br>
+
* [http://en.wikipedia.org/wiki/Quadratic_Gauss_sum ]http://en.wikipedia.org/wiki/<br>
  
 
<h5>관련기사</h5>
 
<h5>관련기사</h5>

2009년 8월 13일 (목) 09:35 판

간단한 소개

 

 

 

정17각형의 작도 과정에서 나타나는 가우스합
  • \(\zeta=e^{2\pi i \over 17}\)  로 두자. 이 값을 대수적으로 구하는 것이 목표.
  • \((3^1, 3^2,3^3, 3^4, 3^5, 3^7, 3^8, 3^9, 3^{10}, 3^{11}, 3^{12}, 3^{13}, 3^{14}, 3^{15}, 3^{16}) \equiv (3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4,12, 2, 6, 1) \pmod {17}\)
  • 이 순서대로 2로 나눈 나머지에 따라서 분류
    • \(A_0 = \zeta^{9} + \zeta^{13} + \zeta^{15} + \zeta^{16}+\zeta^{8} + \zeta^{4} + \zeta^{2} +\zeta^{1}\)
    • \(A_1 = \zeta^3 + \zeta^{10} + \zeta^{5} + \zeta^{11}+\zeta^{14} + \zeta^{7} + \zeta^{12} +\zeta^{6}\)
    • \(A_0+A_1= -1\), \(A_{0}A_{1} = -4\), \(A_0>A_1\)
    • \(A_0 = \frac{-1 + \sqrt{17}}{2}\) , \(A_1= \frac{-1 - \sqrt{17}}{2}\)
  • 참고로 위에서 \(A_0-A_1\) 

 

 

 

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료
관련기사

 

 

블로그

 

이미지 검색

 

동영상