"부정적분의 초등함수 표현(Integration in finite terms)"의 두 판 사이의 차이
46번째 줄: | 46번째 줄: | ||
(따름정리) | (따름정리) | ||
− | 정수 n에 대하여 <math>\int x^{2n}e^{ | + | 정수 n에 대하여 <math>\int x^{2n}e^{ax^2} dx</math> (<math>a\neq 0</math>)는 초등함수가 아니다. |
자연수 n에 대하여 <math>\int x^{-n}e^{cx} dx</math> (<math>c\neq 0</math>)는 초등함수가 아니다. | 자연수 n에 대하여 <math>\int x^{-n}e^{cx} dx</math> (<math>c\neq 0</math>)는 초등함수가 아니다. |
2020년 11월 10일 (화) 10:42 판
개요
리우빌의 정리
(정리 ) 리우빌, 1835
(a) \(F\)가 \(x,y_1,\cdots,y_m\)의 대수적함수이고, \(y_1,\cdots,y_m\) 는 \(x\)의 함수로서 \(\frac{dy_1}{dx},\cdots,\frac{dy_m}{dx}\) 가 \(x,y_1,\cdots,y_m\)의 대수적함수로 표현된다면, 다음 두 명제는 동치이다.
(i) \(\int F(x,y_1,y_2,\cdots,y_m) \,dx\) 는 초등함수이다.
(ii) \(\int F(x,y_1,y_2,\cdots,y_m) \,dx=U_0+\sum_{j=1}^{n}C_j \ln(U_j)\) 여기서 \(C_j\)는 상수이고, \(U_j\)는 \(x,y_1,\cdots,y_m\)의 대수적함수
(b) \(F\)가 \(x,y_1,\cdots,y_m\)의 유리함수이고, \(y_1,\cdots,y_m\) 는 \(x\)의 함수로서 \(\frac{dy_1}{dx},\cdots,\frac{dy_m}{dx}\) 가 \(x,y_1,\cdots,y_m\)의 유리함수로 표현된다면, 다음 두 명제는 동치이다.
(i) \(\int F(x,y_1,y_2,\cdots,y_m) \,dx\) 는 초등함수이다.
(ii) \(\int F(x,y_1,y_2,\cdots,y_m) \,dx=U_0+\sum_{j=1}^{n}C_j \ln(U_j)\) 여기서 \(C_j\)는 상수이고, \(U_j\)는 \(x,y_1,\cdots,y_m\)의 유리함수
리우빌 정리의 특수한 경우
(정리 ) 리우빌, 1835
\(f(x), g(x)\) 는 유리함수이면, (단, \(g(x)\) 는 상수함수가 아님) 다음 두 명제는 동치이다.
(i)\(\int f(x)e^{g(x)} \,dx\) 는 초등함수이다.
(ii) 유리함수 \(R(x)\)가 존재하여 \(f(x)=R'(x)+R(x)g'(x)\) 를 만족시킨다.
(증명)은 [Ritt48]
- 노트
- \(F(x,y_1)=xy_1\), \(y_1=e^{g(x)}\) 로 두면 리우빌 정리(b)의 조건을 만족시킴\[y_1'=g'(x)e^{g(x)}=g'(x)y_1\] 는 \(x,y_1\) 의 유리함수
- \(F(x,y_1)=xy_1\), \(y_1=e^{g(x)}\) 로 두면 리우빌 정리(b)의 조건을 만족시킴\[y_1'=g'(x)e^{g(x)}=g'(x)y_1\] 는 \(x,y_1\) 의 유리함수
(따름정리)
정수 n에 대하여 \(\int x^{2n}e^{ax^2} dx\) (\(a\neq 0\))는 초등함수가 아니다.
자연수 n에 대하여 \(\int x^{-n}e^{cx} dx\) (\(c\neq 0\))는 초등함수가 아니다.
예
- 초등함수가 아닌경우\[\int e^{-\frac{x^2}{2}} dx\]
- http://www.wolframalpha.com/input/?i=integrate+sqrt+ln+x\(\int \sqrt{\ln x} dx=\int 2t^2e^{t^2}dt\), \(t^2=\ln x\)
- http://www.wolframalpha.com/input/?i=integrate+1+over+sqrt+ln+x[1]\(\int \frac{1}{\sqrt{\ln x}} dx=\int 2e^{t^2}dt\), \(t^2=\ln x\)
\(\int \frac{e^{ax}}{\sqrt{x}} dx=\int 2e^{at^2}dt\), \(t^2=x\)
\(\int e^{e^{x}} dx=\int \frac{e^t}{t}dt\), \(t=e^x\)
\(\int \frac{1}{\ln x} dx=\int \frac{e^{t}}{t}dt\), \(t=\ln x\)
\(\int \ln(\ln x)dx = x\ln (\ln x) -\int \frac{1}{\ln x} dx\)
\(\int \frac{\sin x}{x} dx = \mbox{Im}(\int \frac{e^{ix}}{x}dx)\)
- [MAR94] 참고
체비셰프의 정리
(정리)
유리수 \(p,q,r\neq0\)와 실수 \(a,b\)에 대하여, 다음 둘은 동치이다.
(i)\(\int x^p(a+bx)^q \,dx\) 는 초등함수이다.
(ii) \(\frac{(p+1)}{r},q,\frac{(p+1)}{r}+q\) 중에 적어도 하나는 정수이다.
예
\(\int \sqrt[3]{1+x^2}dx\) 는 초등함수가 아니다. \(f(x)=x^k\) 의 그래프의 길이함수 \(\int \sqrt{1+k^2x^{2k-2}}\,dx\) 는 \(k=1\) 또는 \(k=1+\frac{1}{n}\) 일 때만 초등함수이다.
- http://www.wolframalpha.com/input/?i=integrate+sqrt+sin+x
- \(\int \sqrt{\sin x}\,dx=\int u^{1/2}(1-u^2)^{-1/2}\,du\) (\(u=\sin x\)) 는 초등함수가 아니다.
- http://www.wolframalpha.com/input/?i=integrate+sqrt+cos+x
- \(\int \sqrt{\cos x}\,dx\) 는 초등함수가 아니다.
- \(\int \sqrt{\tan x}\,dx\)는 초등함수이다. (\(u^2=\tan x\))
정수 \(m,n\)에 대하여, \(\int (1-x^n)^{1/m}\) 는 초등함수이다. \(\iff\) \(m=\pm 1\) 또는 \(n=\pm 1\) 또는 \(m=n=2\) 또는 \(m=-n\)
\(\int (\sin x)^m(\cos x)^n \,dx\) 는 모든 정수 \(m,n\)에 대하여 초등함수이다.
- 참고 [MAR94]
역사
관련된 항목들
관련도서\
- [Ritt48]Integration in finite terms: Liouville's theory of elementary methods
- Joseph Fels Ritt,Columbia University Press, 1948
위키링크
관련논문
- On solvability and unsolvability of equations in explicit form
- A G Khovanskii, Russian Math. Surveys 2004, 59 (4), 661-736
- Integration in elementary terms
- Brian Conrad, webpage
- From analytic to algebraic methods. Liouville’s approach to integration in finite terms
- Jesper Lützen, NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin, Volume 2, Number 1 / 1994년 12월
- [MAR94]An Invitation to Integration in Finite Terms
- Elena Anne Marchisotto and Gholam-Ali Zakeri, The College Mathematics Journal, Vol. 25, No. 4 (Sep., 1994), pp. 295-308
- Integration in Finite Terms: The Liouville Theory
- Toni Kasper, Mathematics Magazine, Vol. 53, No. 4 (Sep., 1980), pp. 195-201
- On Liouville's theory of elementary functions
- Maxwell Rosenlicht, Pacific J. Math. Volume 65, Number 2 (1976), 485-492
- Integration in Finite Terms
- Maxwell Rosenlicht, The American Mathematical Monthly, Vol. 79, No. 9 (Nov., 1972), pp. 963-972
- The Problem of Integration in Finite Terms
- Robert H. Risch, Transactions of the American Mathematical Society, Vol. 139, (May, 1969), pp. 167-189
- Liouville's theorem on functions with elementary integrals
- Maxwell Rosenlicht, Pacific J. Math. Volume 24, Number 1 (1968), 153-161