"Lieb-Liniger delta Bose gas"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
32번째 줄: 32번째 줄:
 
==related items==
 
==related items==
  
 +
 
 +
 +
==computational resource==
 +
* Day 5 - Yang-Baxter, Delta Bosons, Contact Terms
 +
** [http://msstp.org/sites/default/files/Problems4.pdf Bose-Einstein Condensation and BAE exercise .pdf]
 +
** [http://msstp.org/sites/default/files/Lecture%203%20-%20Problem%201%20solution.nb Nikolay Gromov, Lecture 4 (solution to Problem day 2) (nb)]
 +
** [http://msstp.org/sites/default/files/problem4.nb Bose-Einstein Condensation and BAE solution .nb]
  
  
38번째 줄: 45번째 줄:
 
* http://en.wikipedia.org/wiki/Lieb-Liniger_model
 
* http://en.wikipedia.org/wiki/Lieb-Liniger_model
  
 
+
  
 
==articles==
 
==articles==
* C. N. Yang and C. P. Yang [http://dx.doi.org/10.1063/1.1664947 Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction], J. Math. Phys. 10, 1115 (1969)
+
* C. N. Yang and C. P. Yang [http://dx.doi.org/10.1063/1.1664947 Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction], J. Math. Phys. 10, 1115 (1969)
* C.N. Yang [http://dx.doi.org/10.1103/PhysRevLett.19.1312 Some exact results for the many-body problem in one dimension with repulsive delta-function interaction], Phys. Rev. Lett. 19 (1967), 1312-1315
+
* C.N. Yang [http://dx.doi.org/10.1103/PhysRevLett.19.1312 Some exact results for the many-body problem in one dimension with repulsive delta-function interaction], Phys. Rev. Lett. 19 (1967), 1312-1315
 
* Elliott H. Lieb and Werner Liniger [http://link.aps.org/doi/10.1103/PhysRev.130.1605 Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State], 1963
 
* Elliott H. Lieb and Werner Liniger [http://link.aps.org/doi/10.1103/PhysRev.130.1605 Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State], 1963
 
+
 
  
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2013년 3월 4일 (월) 12:44 판

introduction

  • N bosons interacting on a line of length L via the delta function potential
  • one-dimensional Bose gas
  • 1963 Lieb and Liniger solved by Bethe ansatz

 

Hamiltonian

  • quantum mechanical Hamiltonian

\[H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)\]
 

two-body scattering term

  • \(s_{ab}=k_a-k_b+ic\)


Bethe-ansatz equation

\[\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}\]

 

energy spectrum

  • energy of a Bethe state

\[E=\sum_{j=1}^{N}k_j^2\]

 

related items

 

computational resource


encyclopedia


articles