"Lieb-Liniger delta Bose gas"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
46번째 줄: 46번째 줄:
  
 
==articles==
 
==articles==
 +
* http://link.springer.com/article/10.1007%2FBF02097001
 
* C. N. Yang and C. P. Yang [http://dx.doi.org/10.1063/1.1664947 Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction], J. Math. Phys. 10, 1115 (1969)
 
* C. N. Yang and C. P. Yang [http://dx.doi.org/10.1063/1.1664947 Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction], J. Math. Phys. 10, 1115 (1969)
 
* C.N. Yang [http://dx.doi.org/10.1103/PhysRevLett.19.1312 Some exact results for the many-body problem in one dimension with repulsive delta-function interaction], Phys. Rev. Lett. 19 (1967), 1312-1315
 
* C.N. Yang [http://dx.doi.org/10.1103/PhysRevLett.19.1312 Some exact results for the many-body problem in one dimension with repulsive delta-function interaction], Phys. Rev. Lett. 19 (1967), 1312-1315

2013년 3월 4일 (월) 15:44 판

introduction

  • N bosons interacting on a line of length L via the delta function potential
  • one-dimensional Bose gas
  • 1963 Lieb and Liniger solved by Bethe ansatz

 

Hamiltonian

  • quantum mechanical Hamiltonian

\[H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)\]
 

two-body scattering term

  • \(s_{ab}=k_a-k_b+ic\)


Bethe-ansatz equation

\[\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}\]

 

energy spectrum

  • energy of a Bethe state

\[E=\sum_{j=1}^{N}k_j^2\]

 

related items

 

computational resource

encyclopedia


articles