"Lieb-Liniger delta Bose gas"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
46번째 줄: | 46번째 줄: | ||
==articles== | ==articles== | ||
+ | * http://link.springer.com/article/10.1007%2FBF02097001 | ||
* C. N. Yang and C. P. Yang [http://dx.doi.org/10.1063/1.1664947 Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction], J. Math. Phys. 10, 1115 (1969) | * C. N. Yang and C. P. Yang [http://dx.doi.org/10.1063/1.1664947 Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction], J. Math. Phys. 10, 1115 (1969) | ||
* C.N. Yang [http://dx.doi.org/10.1103/PhysRevLett.19.1312 Some exact results for the many-body problem in one dimension with repulsive delta-function interaction], Phys. Rev. Lett. 19 (1967), 1312-1315 | * C.N. Yang [http://dx.doi.org/10.1103/PhysRevLett.19.1312 Some exact results for the many-body problem in one dimension with repulsive delta-function interaction], Phys. Rev. Lett. 19 (1967), 1312-1315 |
2013년 3월 4일 (월) 15:44 판
introduction
- N bosons interacting on a line of length L via the delta function potential
- one-dimensional Bose gas
- 1963 Lieb and Liniger solved by Bethe ansatz
Hamiltonian
- quantum mechanical Hamiltonian
\[H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)\]
two-body scattering term
- \(s_{ab}=k_a-k_b+ic\)
Bethe-ansatz equation
\[\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}\]
energy spectrum
- energy of a Bethe state
\[E=\sum_{j=1}^{N}k_j^2\]
computational resource
encyclopedia
articles
- http://link.springer.com/article/10.1007%2FBF02097001
- C. N. Yang and C. P. Yang Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction, J. Math. Phys. 10, 1115 (1969)
- C.N. Yang Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312-1315
- Elliott H. Lieb and Werner Liniger Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State, 1963