"Lieb-Liniger delta Bose gas"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
− | * | + | * N bosons interacting on the line $[0,L]$ of length L via the delta function potential |
− | * | + | * one-dimensional Bose gas |
− | * | + | * 1963 Lieb and Liniger solved by [[Bethe ansatz]] |
− | + | * In 1963, Lieb and Liniger solved exactly a one dimensional model of bosons interacting by a repulsive \delta-potential and calculated the ground state in the thermodynamic limit | |
2015년 8월 10일 (월) 23:30 판
introduction
- N bosons interacting on the line $[0,L]$ of length L via the delta function potential
- one-dimensional Bose gas
- 1963 Lieb and Liniger solved by Bethe ansatz
- In 1963, Lieb and Liniger solved exactly a one dimensional model of bosons interacting by a repulsive \delta-potential and calculated the ground state in the thermodynamic limit
Hamiltonian
- quantum mechanical Hamiltonian
\[H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)\]
wave function
- $\psi(x_1, x_2, \dots, x_j, \dots,x_N)$
- $\psi(x_1, \dots, x_N) = \sum_P a(P)\exp \left( i \sum_{j=1}^N k_{Pj} x_j\right)$
$$ a(P) = \prod\nolimits_{1\leq i<j \leq N}\left(1+\frac{ic}{k_{Pi} -k_{Pj}}\right) \ . $$
two-body scattering term
- \(s_{ab}=k_a-k_b+ic\)
Bethe-ansatz equation
\[\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}\]
energy spectrum
- energy of a Bethe state
\[E=\sum_{j=1}^{N}k_j^2\]
computational resource
encyclopedia
articles
- Veksler, Hagar, and Shmuel Fishman. “A Generalized Lieb-Liniger Model.” arXiv:1508.02011 [cond-Mat, Physics:math-Ph], August 9, 2015. http://arxiv.org/abs/1508.02011.
- Flassig, Daniel, Andre Franca, and Alexander Pritzel. “Large-N Ground State of the Lieb-Liniger Model and Yang-Mills Theory on a Two-Sphere.” arXiv:1508.01515 [cond-Mat, Physics:hep-Th], August 6, 2015. http://arxiv.org/abs/1508.01515.
- Dorlas, T. C. “Orthogonality and Completeness of the Bethe Ansatz Eigenstates of the Nonlinear Schroedinger Model.” Communications in Mathematical Physics 154, no. 2 (June 1, 1993): 347–76. doi:10.1007/BF02097001.
- Yang, C. N., and C. P. Yang. “Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction.” Journal of Mathematical Physics 10, no. 7 (July 1, 1969): 1115–22. doi:[10.1063/1.1664947 http://dx.doi.org/10.1063/1.1664947].
- C.N. Yang Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312-1315
- Elliott H. Lieb and Werner Liniger Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State, 1963