"가우스의 놀라운 정리(Theorema Egregium)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
8번째 줄: | 8번째 줄: | ||
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">지도제작에의 의미</h5> | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">지도제작에의 의미</h5> | ||
− | |||
− | |||
* 구면의 아주 작은 부분이라고 할지라도 수학적으로 엄밀하게 거리와 각도가 모두 보존되도록 하는 평면지도를 그릴수 없다는 것을 의미함.<br> | * 구면의 아주 작은 부분이라고 할지라도 수학적으로 엄밀하게 거리와 각도가 모두 보존되도록 하는 평면지도를 그릴수 없다는 것을 의미함.<br> | ||
− | * 만약 이것이 | + | ** 만약 이것이 가능하려면, 구면과 평면의 가우스 곡률이 같아야 함.<br> |
− | + | ** 그러나 구면의 가우스 곡률은 언제나 양수이고, 평면의 가우스 곡률은 언제나 0 이다.<br> | |
− | + | * 이것은 지도제작에 언제나 존재하게 되는 딜레마를 의미함.<br> | |
+ | * 지도를 제작한다면 원하는 성질을 얻는 대신, 무언가는 희생해야 한다는 것을 뜻함.<br> | ||
+ | * [[수학과 지도학|지도와 수학]] 항목 참조<br> | ||
81번째 줄: | 81번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">참고할만한 자료</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">참고할만한 자료</h5> | ||
− | * http://ko.wikipedia.org/wiki/ | + | * [http://ko.wikipedia.org/wiki/%EA%B0%80%EC%9A%B0%EC%8A%A4%EA%B3%A1%EB%A5%A0 http://ko.wikipedia.org/wiki/가우스곡률] |
− | * http://en.wikipedia.org/wiki/ | + | * http://en.wikipedia.org/wiki/Theorema_Egregium |
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> |
2009년 7월 7일 (화) 14:13 판
간단한 소개
- 학부 미분기하학에서 배우게 되는 중요한 정리 중의 하나
- 가우스 곡률은 곡면이 얼마나 휘어 있는가를 재는 양
- 이 가우스 곡률은 그 곡면의 거리와 각도를 재는 것으로 알수 있다는 정리
지도제작에의 의미
- 구면의 아주 작은 부분이라고 할지라도 수학적으로 엄밀하게 거리와 각도가 모두 보존되도록 하는 평면지도를 그릴수 없다는 것을 의미함.
- 만약 이것이 가능하려면, 구면과 평면의 가우스 곡률이 같아야 함.
- 그러나 구면의 가우스 곡률은 언제나 양수이고, 평면의 가우스 곡률은 언제나 0 이다.
- 만약 이것이 가능하려면, 구면과 평면의 가우스 곡률이 같아야 함.
- 이것은 지도제작에 언제나 존재하게 되는 딜레마를 의미함.
- 지도를 제작한다면 원하는 성질을 얻는 대신, 무언가는 희생해야 한다는 것을 뜻함.
- 지도와 수학 항목 참조
상위 주제
하위페이지
재미있는 사실
역사
많이 나오는 질문과 답변
- 네이버 지식인
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
관련된 고교수학 또는 대학수학
관련된 다른 주제들
관련도서 및 추천도서
- 도서내검색
- 도서검색
참고할만한 자료
- http://ko.wikipedia.org/wiki/가우스곡률
- http://en.wikipedia.org/wiki/Theorema_Egregium
- http://www.wolframalpha.com/input/?i=
- 대한수학회 수학 학술 용어집
- 네이버 오늘의과학
관련기사
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=놀라운정리
- 네이버 블로그 검색 http://cafeblog.search.naver.com/search.naver?where=post&sm=tab_jum&query=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
- 스프링노트 http://www.springnote.com/search?stype=all&q=
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com