"로그함수와 유리함수가 있는 정적분"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
9번째 줄: | 9번째 줄: | ||
==개요== | ==개요== | ||
− | * 다음 정적분의 계산:<math>\int_{0}^{\infty}\frac{\ln(x^{2}+1)}{x^{2}+1}\,dx=\pi\ln2</math | + | * 다음 정적분의 계산:<math>\int_{0}^{\infty}\frac{\ln(x^{2}+1)}{x^{2}+1}\,dx=\pi\ln2</math> |
− | * [[로그 사인 적분 (log sine integrals)]]의 다음 결과를 이용할 수 있다:<math>\int_{0}^{\pi/2}\log(\sin x)\,dx=-\frac{\pi\ln 2}{2}</math | + | * [[로그 사인 적분 (log sine integrals)]]의 다음 결과를 이용할 수 있다:<math>\int_{0}^{\pi/2}\log(\sin x)\,dx=-\frac{\pi\ln 2}{2}</math> |
47번째 줄: | 47번째 줄: | ||
==메모== | ==메모== | ||
− | * [http://cjackal.tistory.com/109 http://cjackal.tistory.com/10][http://cjackal.tistory.com/109 9] | + | * [http://cjackal.tistory.com/109 http://cjackal.tistory.com/10][http://cjackal.tistory.com/109 9] |
− | * http://www.artofproblemsolving.com/Forum/viewtopic.php?t=340081 | + | * http://www.artofproblemsolving.com/Forum/viewtopic.php?t=340081 |
* Math Overflow http://mathoverflow.net/search?q= | * Math Overflow http://mathoverflow.net/search?q= | ||
67번째 줄: | 67번째 줄: | ||
==수학용어번역== | ==수학용어번역== | ||
− | * 단어사전 | + | * 단어사전 |
** http://translate.google.com/#en|ko| | ** http://translate.google.com/#en|ko| | ||
** http://ko.wiktionary.org/wiki/ | ** http://ko.wiktionary.org/wiki/ | ||
* 발음사전 http://www.forvo.com/search/ | * 발음사전 http://www.forvo.com/search/ | ||
− | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] | + | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] |
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] | * [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] |
2020년 11월 12일 (목) 23:14 판
이 항목의 수학노트 원문주소
개요
- 다음 정적분의 계산\[\int_{0}^{\infty}\frac{\ln(x^{2}+1)}{x^{2}+1}\,dx=\pi\ln2\]
- 로그 사인 적분 (log sine integrals)의 다음 결과를 이용할 수 있다\[\int_{0}^{\pi/2}\log(\sin x)\,dx=-\frac{\pi\ln 2}{2}\]
치환적분을 이용한 방법
\(I=\int_{0}^{\infty}\frac{\ln(x^{2}+1)}{x^{2}+1}\,dx\) 에서 \(x=\tan (t)\) 로 두면,
\(I=\int_0^{\frac{\pi }{2}} \log \left(\sec ^2(t)\right) \, dt=-2 \int_0^{\frac{\pi }{2}} \log (\cos (t)) \, dt\)
로그 사인 적분 (log sine integrals) 에서 얻은
\(\int_{0}^{\pi/2}\log(\sin x)\,dx=-\frac{\pi\log 2}{2}\) 와 \(\int_{0}^{\pi/2}\log(\sin x)\,dx=\int_{0}^{\pi/2}\log(\cos x)\,dx\) 이용하면, \(I=\pi\ln2\) 를 얻는다.
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
- http://math.stackexchange.com/questions/177160/integral-int-infty-infty-frac-lnx21x21dx
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 한국물리학회 물리학 용어집 검색기
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxbldGWkxmX2pCMlk/edit
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트