"Umbral moonshine"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
* $k=1,2,3,4,6,8$
+
* $k\in \{1,2,3,4,6,8\}$ or $\ell=k+1\in \{2,3,4,5,7,9\}$
 +
$$
 +
\frac{24}{\ell-1}-1\in \{23,11,7,5,3,2\}
 +
$$
 +
* properties
 +
** primes dividing $|M_{24}|$
 +
** $(p+1)|24$
 +
** $\rm{PSL}(2,\mathbb{F}_p)\subset M_{24}$
 
* [[Mathieu moonshine]] corresponds to $k=1$ case
 
* [[Mathieu moonshine]] corresponds to $k=1$ case
  
6번째 줄: 13번째 줄:
  
 
==Jacobi form==
 
==Jacobi form==
 
+
* [[Jacobi forms]]
  
  
37번째 줄: 44번째 줄:
 
* [[monstrous moonshine]]
 
* [[monstrous moonshine]]
 
* [[Characters of superconformal algebra and mock theta functions]]
 
* [[Characters of superconformal algebra and mock theta functions]]
 +
 +
 +
==computational resource==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxNW5LZDU3eGU0aVk/edit
 +
 +
  
 
==expositions==
 
==expositions==

2013년 8월 5일 (월) 02:03 판

introduction

  • $k\in \{1,2,3,4,6,8\}$ or $\ell=k+1\in \{2,3,4,5,7,9\}$

$$ \frac{24}{\ell-1}-1\in \{23,11,7,5,3,2\} $$

  • properties
    • primes dividing $|M_{24}|$
    • $(p+1)|24$
    • $\rm{PSL}(2,\mathbb{F}_p)\subset M_{24}$
  • Mathieu moonshine corresponds to $k=1$ case


Jacobi form


$\mathcal{N}=4$ super conformal algebra

  • $c=6k$, $k\in \mathbb{Z}_{\geq 1}$
  • two types of representations : BPS and non-BPS


extremal Jacobi forms

mock modular form

umbral forms

umbral groups

umbral moonshine conjecture

related items


computational resource


expositions