"BRST quantization and cohomology"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
14번째 줄: 14번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">gauge fixing==
+
==gauge fixing==
  
 
 
 
 
22번째 줄: 22번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">ghost variables==
+
==ghost variables==
  
 
* [[Faddeev–Popov ghost fields|ghost fields]]<br>
 
* [[Faddeev–Popov ghost fields|ghost fields]]<br>
32번째 줄: 32번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">Faddeev-Ghost determinant==
+
==Faddeev-Ghost determinant==
  
 
* [http://hitoshi.berkeley.edu/230A/FPghosts.pdf Faddeev-Popov ghosts], Hitoshi Murayama<br>
 
* [http://hitoshi.berkeley.edu/230A/FPghosts.pdf Faddeev-Popov ghosts], Hitoshi Murayama<br>
42번째 줄: 42번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">path integral and ghost sector==
+
==path integral and ghost sector==
  
 
* <math>Z = \int\!\mathcal{D}X\,\mathcal{D}c \mathcal{D}b \mathcal{D}\bar{c} \mathcal{D}\bar{b} \,e^{-\int\left(\partial X \partial \bar{X} -b_{zz}\partial_{\bar{z}}c^{z}+b_{\bar{z}\bar{z}}\partial_{z}c^{\bar{z}}\right)}</math>
 
* <math>Z = \int\!\mathcal{D}X\,\mathcal{D}c \mathcal{D}b \mathcal{D}\bar{c} \mathcal{D}\bar{b} \,e^{-\int\left(\partial X \partial \bar{X} -b_{zz}\partial_{\bar{z}}c^{z}+b_{\bar{z}\bar{z}}\partial_{z}c^{\bar{z}}\right)}</math>
61번째 줄: 61번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">nilpotency of BRST operator==
+
==nilpotency of BRST operator==
  
 
*  new, global symmetry (BRST)<br>
 
*  new, global symmetry (BRST)<br>
73번째 줄: 73번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">construction of Hilbert space of states==
+
==construction of Hilbert space of states==
  
 
*  BRST charge acts on a huge space<br>
 
*  BRST charge acts on a huge space<br>
85번째 줄: 85번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">BRST cohomology==
+
==BRST cohomology==
  
 
* <math>\Lambda_{\infty}</math> semi-infinite form<br>
 
* <math>\Lambda_{\infty}</math> semi-infinite form<br>
96번째 줄: 96번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">applications==
+
==applications==
  
 
*  BRST approach to minimal models BRST approach to minimal models [http://dx.doi.org/10.1016/0550-3213%2889%2990568-3 http://dx.doi.org/10.1016/0550-3213(89)90568-3]<br>
 
*  BRST approach to minimal models BRST approach to minimal models [http://dx.doi.org/10.1016/0550-3213%2889%2990568-3 http://dx.doi.org/10.1016/0550-3213(89)90568-3]<br>
108번째 줄: 108번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items==
+
==related items==
  
 
* [[물리학과 cohomology]]<br>
 
* [[물리학과 cohomology]]<br>
118번째 줄: 118번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books==
+
==books==
  
 
* Polchinski, vol. I. $3.1-3.4, 4.2-4.3
 
* Polchinski, vol. I. $3.1-3.4, 4.2-4.3
127번째 줄: 127번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
+
==encyclopedia==
  
 
* http://en.wikipedia.org/wiki/BRST_quantization
 
* http://en.wikipedia.org/wiki/BRST_quantization
141번째 줄: 141번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">expositions==
+
==expositions==
  
 
* [http://www.math.sciences.univ-nantes.fr/%7Ewagemann/LAlecture.pdf Introduction to Lie algebra cohomology with a view towards BRST cohomology] ,Friedrich Wagemann, 2010-8<br>
 
* [http://www.math.sciences.univ-nantes.fr/%7Ewagemann/LAlecture.pdf Introduction to Lie algebra cohomology with a view towards BRST cohomology] ,Friedrich Wagemann, 2010-8<br>
151번째 줄: 151번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==
+
==articles==
  
 
* Igor B. Frenkel, Anton M. Zeitlin, Quantum Group as Semi-infinite Cohomology
 
* Igor B. Frenkel, Anton M. Zeitlin, Quantum Group as Semi-infinite Cohomology
163번째 줄: 163번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">blogs==
+
==blogs==
  
 
* [http://www.math.columbia.edu/%7Ewoit/notesonbrst.pdf http://www.math.columbia.edu/~woit/notesonbrst.pdf]
 
* [http://www.math.columbia.edu/%7Ewoit/notesonbrst.pdf http://www.math.columbia.edu/~woit/notesonbrst.pdf]
184번째 줄: 184번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">TeX ==
+
==TeX ==

2012년 10월 28일 (일) 17:03 판

introduction

  • gauge theory = principal G-bundle
  • we require a quantization of gauge theory
  • BRST quantization is one way to quantize the theory and is a part of path integral
    • gauge theory allows 'local symmetry' which should be ignored to be physical
    • this ignoring process leads to the cohomoloy theory.
  • BRST = quantization procedure of a classical system with constraints by introducing odd variables (“ghosts”)
  • re-packaging of Faddeev-Popov quantization
  • the conditions D = 26 and α0 = 1 for the space-time dimension D and the zero-intercept α0 of leading trajectory are required by the nilpotency QB2 = 0 of the BRS charge

 

 

gauge fixing

 

 

 

ghost variables

 

 

 

Faddeev-Ghost determinant

 

 

 

path integral and ghost sector

  • \(Z = \int\!\mathcal{D}X\,\mathcal{D}c \mathcal{D}b \mathcal{D}\bar{c} \mathcal{D}\bar{b} \,e^{-\int\left(\partial X \partial \bar{X} -b_{zz}\partial_{\bar{z}}c^{z}+b_{\bar{z}\bar{z}}\partial_{z}c^{\bar{z}}\right)}\)
  • \(e^{S_1(X)+S_2(b,c,\bar{b},\bar{c},\cdots,X)\)
  • DX : matter and Db : ghost Dc : antighost
  • bc system of \epsilon=+1 (in Faddeev–Popov ghost fields)
  • \lambda=2
  • c_{b,c}=-26
  • [c]=-1,[b]=2
  • global issues
    • discrepancies in conformal gauge
    • moduli spaces
    • CKV
  • path integral and moduli space of Riemann surfaces

 

 

nilpotency of BRST operator

 

 

construction of Hilbert space of states

  • BRST charge acts on a huge space
  • Q.v =0 <=> physical condition
  • if the total central charge is not 0 but c, Q_{BRST}^2=c

 

 

 

BRST cohomology

  • \(\Lambda_{\infty}\) semi-infinite form
  • \(\mathfrak{g}\) \[\mathbb{Z}\]-graded Lie algebra
  • \(\sigma\) : anti-linear automorphism sending \(\mathfrak{g}_{n}\) to \(\mathfrak{g}_{-n}\)
  • \(H^2(\mathfrak{g})=0\) (i.e. no non-trivial central extension)
     

 

 

applications

 

 

 

related items

 

 

books

  • Polchinski, vol. I. $3.1-3.4, 4.2-4.3
  • GSW, I. 3.1-3.2

 

 

encyclopedia

 

[2]

 

 

expositions

 

 

articles

 

blogs

 

 

 

TeX