"Klein-Gordon equation"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 이름을 Klein-Gordon equation로 바꾸었습니다.) |
|||
18번째 줄: | 18번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
32번째 줄: | 26번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
2012년 6월 21일 (목) 04:49 판
introduction
- free massive scalar field which describes the spin-0 particles
- in condensed matter physics it describes long wavelength optical phonons
- formulated as a relativistic generalization of Schrodinger equation
- there are real KG equation and complex KG equation
- real case describes electrically neutral particles
- complex case describes charged particles
- \((\Box + m^2) \psi = 0\) i.e. \((\Box + m^2) \psi =\psi_{tt}-\psi_{xx}-\psi_{yy}-\psi_{zz}+m^2\psi=0\)
- people found 2 problems of KG equations
- negative energy states
- negative probability density
- correct interpretations of \(\phi\) requires the idea of quantum field rather than the particle wavefunction
- negative probability density -> charge density
- Dirac suggested Dirac sea by invoking the exclusion principle and then KG equation only applicable to spinless particles
- for example, \(\pi\)-meson
- Thus the Dirac equation comes in to deal with spin-\(1/2\) particles.
Lorentz invariant commutation relation