"3-manifolds and their invariants"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<math>\frac{24}{7\sqrt{7}}\int_{\pi/3}^{\pi/2}\ln|\frac{\tan t+\sqrt{7}}{\tan t-\sqrt{7}}|\,dt=\frac{2}{\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))=\frac{2}{\sqrt{7}}(Cl(2\pi /7})+Cl(4\pi/7})-Cl(6\pi/7}))</math>” �)
imported>Pythagoras0
1번째 줄: 1번째 줄:
==introduction==
+
==fundamental results on three manifolds==
 +
* mostow-prasad rigidity
 +
* geometrization
  
* volume of knot complements
 
* Chern-Simons invariant of manifolds
 
*  Turaev-Viro invariant (related to [[6j symbols (Racha coefficient)|6j symbols]])<br>
 
** Kauffman and Line 'The Temperley Lie algebra recoupling theory and invariants of 3-manifolds"
 
** Turaev-Viro "state sum invariants of 3-manifolds and quantum 6j-symbols)
 
  
 
+
==two approaches==
 +
* using Kleinian groups
 +
* using [[Triangulations and the Bloch group]]
 +
 
  
 
 
 
 
  
 
==maps between threefolds==
 
==maps between threefolds==
 
 
* maps between aspherical 3 manifolds
 
* maps between aspherical 3 manifolds
 
* aspherical threefolds = second and higher homotopy groups vanish
 
* aspherical threefolds = second and higher homotopy groups vanish
50번째 줄: 49번째 줄:
  
 
 
 
 
 +
==invariants==
 +
* Turaev-Viro invariant (related to [[6j symbols (Racha coefficient)|6j symbols]])
 +
** Kauffman and Line 'The Temperley Lie algebra recoupling theory and invariants of 3-manifolds"
 +
** Turaev-Viro "state sum invariants of 3-manifolds and quantum 6j-symbols)
 +
* [[Chern-Simons invariant]]
 +
* [[Kashaev's volume conjecture]]
 +
* [[Triangulations and the Bloch group]]
 +
* [[Volume of hyperbolic threefolds and L-values]] and volume of knot complements
 +
* [[Number fields and threefolds]]
  
 
 
 
 

2013년 2월 1일 (금) 05:43 판

fundamental results on three manifolds

  • mostow-prasad rigidity
  • geometrization


two approaches


 

maps between threefolds

  • maps between aspherical 3 manifolds
  • aspherical threefolds = second and higher homotopy groups vanish
  • JSJ decomposition http://en.wikipedia.org/wiki/JSJ_decomposition
    • cutting M into
      • Seifert fibered pieces ~ non hyperbolic pieces
      • atoroidal pieces ~ hyperbolic pieces
  • Thurston's geometrization
    • S^3, E\times S^2, Sol
    • E^3, E\times H^2, SL_2
    • H^3, Nil

 

 

Volume of knot complement

  1. KnotData[]
    KnotData["FigureEight", "HyperbolicVolume"]
    N[%, 20]
  • Dedekind zeta funciton evaluated at 2 gives a number related to volume of 3-manifold
  • Bloch-Wigner dilogarithm is involved

 

 

a problem

  • Prove
    $$ \begin{align} \frac{24}{7\sqrt{7}}\int_{\pi/3}^{\pi/2}\ln|\frac{\tan t+\sqrt{7}}{\tan t-\sqrt{7}}|\,dt & =\frac{2}{\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7})) \\ & = \frac{2}{\sqrt{7}}(Cl(2\pi /7)+Cl(4\pi/7)-Cl(6\pi/7)) \end{align} $$
  • a log tangent integral

 

invariants

 

Reshetikihn, Turaev

 

 

software

 

 

history

 

 

 

하위페이지

 

 

related items4667393

 

 

encyclopedia


 

 

books


 

 

 

expositions

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links