"Klein-Gordon equation"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
8번째 줄: 8번째 줄:
  
 
* in condensed matter physics it describes long wavelength optical phonons
 
* in condensed matter physics it describes long wavelength optical phonons
*  there are real KG equation and complex KG equation<br>
+
*  there are real KG equation and complex KG equation
 
** real case describes electrically neutral particles
 
** real case describes electrically neutral particles
 
** complex case describes charged particles
 
** complex case describes charged particles
 
* <math>(\Box + m^2) \psi = 0</math> i.e. <math>(\Box + m^2) \psi =\psi_{tt}-\psi_{xx}-\psi_{yy}-\psi_{zz}+m^2\psi=0</math>
 
* <math>(\Box + m^2) \psi = 0</math> i.e. <math>(\Box + m^2) \psi =\psi_{tt}-\psi_{xx}-\psi_{yy}-\psi_{zz}+m^2\psi=0</math>
*  correct interpretations of <math>\phi</math> requires the idea of quantum field rather than the particle wavefunction<br>
+
*  correct interpretations of <math>\phi</math> requires the idea of quantum field rather than the particle wavefunction
 
** negative probability density -> charge density
 
** negative probability density -> charge density
*  Dirac suggested Dirac sea by invoking the exclusion principle and then KG equation only applicable to spinless particles<br>
+
*  Dirac suggested Dirac sea by invoking the exclusion principle and then KG equation only applicable to spinless particles
 
** for example, <math>\pi</math>-meson
 
** for example, <math>\pi</math>-meson
 
* Thus the Dirac equation comes in to deal with spin-<math>1/2</math> particles.
 
* Thus the Dirac equation comes in to deal with spin-<math>1/2</math> particles.

2020년 11월 13일 (금) 22:44 판

 

 

introduction

  • in condensed matter physics it describes long wavelength optical phonons
  • there are real KG equation and complex KG equation
    • real case describes electrically neutral particles
    • complex case describes charged particles
  • \((\Box + m^2) \psi = 0\) i.e. \((\Box + m^2) \psi =\psi_{tt}-\psi_{xx}-\psi_{yy}-\psi_{zz}+m^2\psi=0\)
  • correct interpretations of \(\phi\) requires the idea of quantum field rather than the particle wavefunction
    • negative probability density -> charge density
  • Dirac suggested Dirac sea by invoking the exclusion principle and then KG equation only applicable to spinless particles
    • for example, \(\pi\)-meson
  • Thus the Dirac equation comes in to deal with spin-\(1/2\) particles.

 

 

Lorentz invariant commutation relation

 

 

 

related items