"1,2,4,8 과 1,3,7"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
27번째 줄: 27번째 줄:
 
<h5>composition 대수에 관한 후르비츠의 정리 (normed division algebras)</h5>
 
<h5>composition 대수에 관한 후르비츠의 정리 (normed division algebras)</h5>
  
*  실수나 복소수위에 정의된 norm 이 주어진 벡터공간이면서 division algebra이 다음을 만족시킬 경우, normed division algebra로 정의<br><math> \|x \, y\| \ =  \|x \| \, \| y\|</math><br>
 
 
* composition 대수
 
* composition 대수
 
+
* '''composition algebra'''<em style="">A</em> over a [http://en.wikipedia.org/wiki/Field_%28mathematics%29 field]<em style="">K</em> is a [http://en.wikipedia.org/wiki/Unital unital] (but not necessarily [http://en.wikipedia.org/wiki/Associative associative]) [http://en.wikipedia.org/wiki/Algebra_over_a_field algebra] over <em style="">K</em> together with a [http://en.wikipedia.org/wiki/Nondegenerate nondegenerate][http://en.wikipedia.org/wiki/Quadratic_form quadratic form]<em style="">N</em> which satisfies
 
 
 
 
<br>'''composition algebra'''<em style="">A</em> over a [http://en.wikipedia.org/wiki/Field_%28mathematics%29 field]<em style="">K</em> is a [http://en.wikipedia.org/wiki/Unital unital] (but not necessarily [http://en.wikipedia.org/wiki/Associative associative]) [http://en.wikipedia.org/wiki/Algebra_over_a_field algebra] over <em style="">K</em> together with a [http://en.wikipedia.org/wiki/Nondegenerate nondegenerate][http://en.wikipedia.org/wiki/Quadratic_form quadratic form]<em style="">N</em> which satisfies
 
  
 
: <math>N(xy) = N(x)N(y)\,</math>
 
: <math>N(xy) = N(x)N(y)\,</math>
38번째 줄: 34번째 줄:
 
for all <em style="">x</em> and <em style="">y</em> in <em style="">A</em>.
 
for all <em style="">x</em> and <em style="">y</em> in <em style="">A</em>.
  
 
+
*  실수나 복소수위에 정의된 norm 이 주어진 벡터공간이면서 division algebra이 다음을 만족시킬 경우, normed division algebra로 정의<br><math> \|x \, y\| \ =  \|x \| \, \| y\|</math><br>
  
 
Normed division algebras are a special case of composition algebras
 
Normed division algebras are a special case of composition algebras

2010년 9월 16일 (목) 09:01 판

이 항목의 스프링노트 원문주소

 

 

개요
  • \(\mathbb R^n\) 은 division algebra이다 \(\iff\)\(n=1,2,4,8\)
  • \(S^n\) 는 H-space 이다. \(\iff\)\(n=0,1,3,7\)
  • \(S^n\) 은 n개의 일차독립인 벡터장을 갖는다 \(\iff\)\(n=0,1,3,7\)
  • fiber 번들 \(S^p \to S^q \to S^r\) 이 존재한다. \(\iff\)\((p,q,r) = (0,1,1),(1,3,2),(3,7,4),(7,15,8)\)

 

 

프로베니우스의 정리
  • 실수 위에 정의된 결합법칙을 만족하는 유한차원 division algebras
  • 프로베니우스의 정리
    any associative division algebra over R is isomorphic to R, C or H.

 

composition 대수에 관한 후르비츠의 정리 (normed division algebras)

\[N(xy) = N(x)N(y)\,\]

for all x and y in A.

  • 실수나 복소수위에 정의된 norm 이 주어진 벡터공간이면서 division algebra이 다음을 만족시킬 경우, normed division algebra로 정의
    \( \|x \, y\| \ = \|x \| \, \| y\|\)

Normed division algebras are a special case of composition algebras

 

(정리) Hurwitz

The only composition algebras over \(\Bbb{R}\) are \(\Bbb{R}\),\(\Bbb{C}\), \(\Bbb{H}\), and \(\Bbb{O}\) , that is the real numbers, the complex numbers, the quaternions and the octonions.

 

 

관련된 고교수학 또는 대학수학

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

 

 

관련도서

 

사전형태의 자료

 

 

관련논문

 

 

관련기사