"라마누잔과 파이"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
10번째 줄: | 10번째 줄: | ||
<h5> </h5> | <h5> </h5> | ||
+ | |||
+ | * '''[BB1998] '''(5.5.16)<br><math>\frac{1}{\pi}=\sum_{n=0}^{\infty}\frac{(\frac{1}{4})_n(\frac{1}{2})_n(\frac{3}{4})_n}{(n!)^3}d_n(N)x_N^{2n+1}</math><br> | ||
+ | |||
+ | |||
46번째 줄: | 50번째 줄: | ||
<h5>관련도서 및 추천도서</h5> | <h5>관련도서 및 추천도서</h5> | ||
− | * [http://www.amazon.com/PI-AGM-Analytic-Computational-Complexity/dp/047131515X Pi and the AGM]<br> | + | * '''[BB1998]'''[http://www.amazon.com/PI-AGM-Analytic-Computational-Complexity/dp/047131515X Pi and the AGM]<br> |
− | ** Jonathan M. Borwein, Peter B. Borwein | + | ** Jonathan M. Borwein, Peter B. Borwein, Wiley-Interscience (July 13, 1998) |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= |
2009년 8월 14일 (금) 00:07 판
간단한 소개
- \(\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\)
\[\frac{426880 \sqrt{10005}}{\pi} = \sum_{k=0}^\infty \frac{(6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 (-640320)^{3k}}\!\]
- [BB1998] (5.5.16)
\(\frac{1}{\pi}=\sum_{n=0}^{\infty}\frac{(\frac{1}{4})_n(\frac{1}{2})_n(\frac{3}{4})_n}{(n!)^3}d_n(N)x_N^{2n+1}\)
라마누잔의 class invariants
- 라마누잔의 class invariants
- \(g_{58}^2=\frac{\sqrt{29}+5}{2}\)
재미있는 사실
- \(e^{\sqrt{58}\pi}=24591257751.999999822\cdots\)
관련된 고교수학 또는 대학수학
관련된 다른 주제들
- AGM과 파이값의 계산
- 타원적분
- The modular group, j-invariant and the singular moduli
- Hypergeometric functions
- 숫자 163
관련도서 및 추천도서
- [BB1998]Pi and the AGM
- Jonathan M. Borwein, Peter B. Borwein, Wiley-Interscience (July 13, 1998)
- 도서내검색
- 도서검색
참고할만한 자료
- 공식을 구현한 매쓰매티카 파일
- http://documents.wolfram.com/mathematica/Demos/Notebooks/CalculatingPi.html 참고
- Ramanujan, Modular Equations, and Approximations to Pi or How to Compute One Billion Digits of Pi
- J. M. Borwein, P. B. Borwein and D. H. Bailey
- The American Mathematical Monthly, Vol. 96, No. 3 (Mar., 1989), pp. 201-219
- Class number three Ramanujan type series for 1/pi
- J. M. Borwein ,P. B. Borwein
- Journal of Computational and Applied Mathematics (Vol.46 NO.1 / 1993)
- Modular equations and approximations to Pi
- S. Ramanujan
- Quart. J. Pure Appl. Math., (1914), vol. 45, p. 350-372
- Approximations and complex multiplication according to Ramanujan
- D. V. Chudnovsky and G. V. Chudnovsky,
- Ramanujan Revisited, Academic Press Inc., Boston, (1988), p. 375-396 & p. 468-472.
- A WZ Proof of Ramanujan's Formula for Pi
- Shalosh B. Ekhad and Doron Zeilberger
- `Geometry, Analysis, and Mechanics', ed. by J.M. Rassias, World Scientific, Singapore, 1994, 107-108.
- Explicit Ramanujan-type approximations to pi of high order
- J. M. Borwein, P. B. Borwein
- 1987
- Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions
- Nayandeep Deka Baruaha, and Bruce C. Berndt
- Journal of Mathematical Analysis and Applications, Volume 341, Issue 1, 2007
관련기사
- The Mountains of Pi
- The New Yorker, 1992-3-2
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=라마누잔
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=파이
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=