"로그함수와 유리함수가 있는 정적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5>이 항목의 수학노트 원문주소</h5>
+
==이 항목의 수학노트 원문주소</h5>
  
 
* [[로그함수와 유리함수가 있는 정적분]]
 
* [[로그함수와 유리함수가 있는 정적분]]
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5>개요</h5>
+
==개요</h5>
  
 
*  다음 정적분의 계산<br><math>\int_{0}^{\infty}\frac{\ln(x^{2}+1)}{x^{2}+1}\,dx=\pi\ln2</math><br>
 
*  다음 정적분의 계산<br><math>\int_{0}^{\infty}\frac{\ln(x^{2}+1)}{x^{2}+1}\,dx=\pi\ln2</math><br>
18번째 줄: 18번째 줄:
 
 
 
 
  
<h5>치환적분을 이용한 방법</h5>
+
==치환적분을 이용한 방법</h5>
  
 
<math>I=\int_{0}^{\infty}\frac{\ln(x^{2}+1)}{x^{2}+1}\,dx</math> 에서 <math>x=\tan (t)</math> 로 두면,
 
<math>I=\int_{0}^{\infty}\frac{\ln(x^{2}+1)}{x^{2}+1}\,dx</math> 에서 <math>x=\tan (t)</math> 로 두면,
34번째 줄: 34번째 줄:
 
 
 
 
  
<h5>역사</h5>
+
==역사</h5>
  
 
 
 
 
45번째 줄: 45번째 줄:
 
 
 
 
  
<h5>메모</h5>
+
==메모</h5>
  
 
* [http://cjackal.tistory.com/109 http://cjackal.tistory.com/10][http://cjackal.tistory.com/109 9]<br>
 
* [http://cjackal.tistory.com/109 http://cjackal.tistory.com/10][http://cjackal.tistory.com/109 9]<br>
59번째 줄: 59번째 줄:
 
 
 
 
  
<h5>관련된 항목들</h5>
+
==관련된 항목들</h5>
  
 
 
 
 
65번째 줄: 65번째 줄:
 
 
 
 
  
<h5>수학용어번역</h5>
+
==수학용어번역</h5>
  
 
*  단어사전<br>
 
*  단어사전<br>
82번째 줄: 82번째 줄:
 
 
 
 
  
<h5>매스매티카 파일 및 계산 리소스</h5>
+
==매스매티카 파일 및 계산 리소스</h5>
  
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxbldGWkxmX2pCMlk/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxbldGWkxmX2pCMlk/edit
97번째 줄: 97번째 줄:
 
 
 
 
  
<h5>사전 형태의 자료</h5>
+
==사전 형태의 자료</h5>
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
109번째 줄: 109번째 줄:
 
 
 
 
  
<h5>리뷰논문, 에세이, 강의노트</h5>
+
==리뷰논문, 에세이, 강의노트</h5>
  
 
 
 
 
117번째 줄: 117번째 줄:
 
 
 
 
  
<h5>관련논문</h5>
+
==관련논문</h5>
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
127번째 줄: 127번째 줄:
 
 
 
 
  
<h5>관련도서</h5>
+
==관련도서</h5>
  
 
*  도서내검색<br>
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
** http://book.daum.net/search/contentSearch.do?query=

2012년 10월 31일 (수) 14:15 판

==이 항목의 수학노트 원문주소

 

 

==개요

  • 다음 정적분의 계산
    \(\int_{0}^{\infty}\frac{\ln(x^{2}+1)}{x^{2}+1}\,dx=\pi\ln2\)
  • 로그 사인 적분 (log sine integrals)의 다음 결과를 이용할 수 있다
    \(\int_{0}^{\pi/2}\log(\sin x)\,dx=-\frac{\pi\ln 2}{2}\)

 

 

 

==치환적분을 이용한 방법

\(I=\int_{0}^{\infty}\frac{\ln(x^{2}+1)}{x^{2}+1}\,dx\) 에서 \(x=\tan (t)\) 로 두면,

\(I=\int_0^{\frac{\pi }{2}} \log \left(\sec ^2(t)\right) \, dt=-2 \int_0^{\frac{\pi }{2}} \log (\cos (t)) \, dt\)

로그 사인 적분 (log sine integrals) 에서 얻은

\(\int_{0}^{\pi/2}\log(\sin x)\,dx=-\frac{\pi\log 2}{2}\) 와 \(\int_{0}^{\pi/2}\log(\sin x)\,dx=\int_{0}^{\pi/2}\log(\cos x)\,dx\) 이용하면, \(I=\pi\ln2\) 를 얻는다.

 

 

 

==역사

 

 

 

==메모

 

 

 

==관련된 항목들

 

 

==수학용어번역

 

 

==매스매티카 파일 및 계산 리소스

 

 

==사전 형태의 자료

 

 

==리뷰논문, 에세이, 강의노트

 

 

 

==관련논문

 

 

==관련도서