"로저스 다이로그 함수 (Rogers dilogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
17번째 줄: 17번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">정의</h5>
 
<h5 style="margin: 0px; line-height: 2em;">정의</h5>
  
* <math>x\in (0,1)</math>에서 로저스 dilogarithm을 다음과 같이 정의<br><math>L(x)=\operatorname{Li}_2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\frac{\log(1-y)}{y}+\frac{\log(1-y)}{1-y}dy</math><br>
+
* <math>x\in (0,1)</math>에서 로저스 dilogarithm을 다음과 같이 정의<br><math>L(x)=\operatorname{Li}_2(x)+\frac{1}{2}\log x\log (1-x)</math><br>
 
* <math>(-\infty,0],[1,\+\infty)</math>를 제외한 복소평면으로 해석적확장됨<br>
 
* <math>(-\infty,0],[1,\+\infty)</math>를 제외한 복소평면으로 해석적확장됨<br>
  

2011년 7월 28일 (목) 11:27 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

정의
  • \(x\in (0,1)\)에서 로저스 dilogarithm을 다음과 같이 정의
    \(L(x)=\operatorname{Li}_2(x)+\frac{1}{2}\log x\log (1-x)\)
  • \((-\infty,0],[1,\+\infty)\)를 제외한 복소평면으로 해석적확장됨

 

 

함수의 그래프
  • \(x\in (0,1)\) 에서의 그래프

[/pages/4855791/attachments/3056365 Roger_dilogarithm.jpg]

 

 

 

반사공식(오일러)
  • \(0\leq x \leq 1\) 일 때
    \(L(x)+L(1-x)=L(1)\)

 

 

5항 관계식
  • \(0\leq x,y\leq 1\) 일 때, 
    \(L(x)+L(1-xy)+L(y)+L(\frac{1-y}{1-xy})+L\Left( \frac{1-x}{1-xy} )\right)=\frac{\pi^2}{2}\)

 

 

 

special values

\(L(0)=0\)

\(L(1)=\frac{\pi^2}{6}\)

\(L(-1)=-\frac{\pi^2}{12}\)

\(L(\frac{1}{2})=\frac{\pi^2}{12}\)

\(L(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}\)

\(L(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}\)

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서