보존과 임계성 - 랑제방 접근

수학노트
(사용자 이름 삭제됨)님의 2009년 8월 4일 (화) 22:27 판
둘러보기로 가기 검색하러 가기

앞 글에서 말한 무노즈 그룹의 논문(arXiv:0905.1799v2)에 나오는 내용을 좀더 자세히 소개하려 합니다. 큰 그림을 먼저 그려보면, 방향성 있는 스미기 보편성 분류(DP class)에 보존장이 추가되면 보존되는 방향성 있는 스미기 보편성 분류(C-DP class)로 임계점의 성질이 바뀌고, 여기에 에너지 흩어지기와 이 손실을 보충해주는 에너지 주입이 도입되면 동역학적 스미기 보편성 분류(dynamical percolation class; 제 편의상 dynP로 쓰겠습니다)로 다시 한 번 성질이 바뀐다는 겁니다. 즉 DP + [보존장] → C-DP + [손실/주입] → dynP 입니다.

DP에 관한 랑제방 방정식은 아래 미분방정식으로 기술합니다. ρ(x, t)는 시각 t에서 위치 x의 활성(activity)을 뜻하며, 활성장(activity field)으로 부르겠습니다.

\(\partial_t\rho(\vec x,t)=a\rho-b\rho^2+D\nabla^2\rho +\sigma\sqrt{\rho}\eta(\vec x,t)\)

a, b는 조절변수, D는 확산계수, η는 하얀 노이즈입니다. 각 위치에서 a, b에 의해

여기에 보존되는 양(보존장; conserved field)이 활성에 영향을

\(\partial_t\rho(\vec x,t)&=&a\rho-b\rho^2+w\rho E+D\nabla^2\rho +\sigma\sqrt{\rho}\eta(\vec x,t)\\ \partial_t E(\vec x,t)&=&D_E\nabla^2\rho(\vec x,t)\)

\(E(\vec x,t)=E(\vec x,0)+D_E\int_0^t dt'\nabla^2\rho(\vec x,t')\)

 

\(\partial_t E(\vec x,t)=D_E\nabla^2\rho(\vec x,t)-\epsilon\rho(\vec x,t)\)