이항계수와 조합
Pythagoras0 (토론 | 기여)님의 2020년 11월 12일 (목) 22:26 판
개요
- n개의 서로 다른 물건에서 r개를 선택하는 방법\[_n C_r = {n\choose r} = {{n!} \over {r!(n - r)!}}\]
- 조합(combination)이라고도 함
- 조합수학에서 가장 기본적이며 중요한 수열의 하나
- 중요한 성질
- palindromic
- unimodality
생성함수
- 생성함수\[(1+x)^n=\sum_{r=0}^{n} {n\choose r}x^r = {n\choose 0} + {n\choose 1}x + \cdots + {n\choose r}x^r + \cdots + {n\choose n}x^n\]
점화식
- n에 대한 이항계수를 통해, \(n+1\)에 대한 이항계수를 유도할 수 있음\[{n\choose r-1}+{n\choose r}={n+1\choose r}\]
이항계수의 합
\(2^n=\sum_{r=0}^{n} {n\choose r} = {n\choose 0} + {n\choose 1} + \cdots + {n\choose n}\)
(증명)
\((1+x)^n=\sum_{r=0}^{n} {n\choose r}x^r = {n\choose 0} + {n\choose 1}x + \cdots + {n\choose r}x^r + \cdots + {n\choose n}x^n\)
\(x=1\)을 대입 ■
\(n 2^{n-1}= \sum_{r=0}^{n} r {n\choose r}=0 {n\choose 0} + 1 {n\choose 1} + \cdots + r {n\choose r} + \cdots + n {n\choose n}\)
- 예\[80= 5 \times 2^4 = 0 {5\choose 0} + 1 {5\choose 1} + 2 {5\choose 2} +3 {5\choose 3} +4 {5\choose 4} + 5 {5\choose 5}\]
파스칼의 삼각형
이항계수의 q-analogue
- q-이항계수와 q-이항정리 항목 참조
- 팩토리얼(factorial)의 q-analogue\[[n]_q!= [1]_q [2]_q \cdots [n-1]_q [n]_q=\frac{1-q}{1-q} \frac{1-q^2}{1-q} \cdots \frac{1-q^{n-1}}{1-q} \frac{1-q^n}{1-q} =\frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}\]\[_n C_r = {n\choose r} = {{n!} \over {r!(n - r)!}}\]\[{{[n]_q!} \over {[r]_q![n - r]_q!}}=\frac{(q;q)_n}{(q;q)_r(q;q)_{n-r}}=\frac{(1-q)_q^n}{(1-q)_q^r (1-q)_q^{n-r}}\]
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/이항계수[1]
- http://en.wikipedia.org/wiki/binomial_coefficient
- http://www.wolframalpha.com/input/?i=
- http://mathworld.wolfram.com/BinomialSums.html
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
블로그
- 고교 수학의 명장면 (2)
- 피타고라스의 창, 2008-9-30
- 구글 블로그 검색