다중 제타 값

수학노트
Pythagoras0 (토론 | 기여)님의 2015년 1월 28일 (수) 03:23 판 (→‎관련논문)
둘러보기로 가기 검색하러 가기

개요

  • 리만제타함수의 다변수 일반화 $\zeta(s_1, \ldots, s_k)$
  • $s_i$ 가 양의 정수일 때, 오일러 합이라 불림
  • 정수론의 중요한 주제로 물리에서 산란 amplitude 등의 계산에서 등장


정의

\[ \zeta(s_1, \ldots, s_k) = \sum_{n_1 > n_2 > \cdots > n_k > 0} \ \frac{1}{n_1^{s_1} \cdots n_k^{s_k}} = \sum_{n_1 > n_2 > \cdots > n_k > 0} \ \prod_{i=1}^k \frac{1}{n_i^{s_i}}, \!\]

  • $s_1, \ldots, s_k$가 정수일 때, $w=s_1+\cdots+s_k$를 weight, $k$를 depth로 부른다


이중 제타

  • 오일러의 공식

$$\zeta(2,1)=\zeta(3)$$ $$\zeta(1,2)=-2\zeta(3)$$

여러 가지 관계식

double shuffle

  • $m,n>1$ 일 때, $$\zeta(m)\zeta(n)=\zeta(m,n)+\zeta(n,m)+\zeta(m+n)$$
  • 증명

$$ \zeta(m)\zeta(n)=(\sum_{j}\frac{1}{j^{m}})(\sum_{k}\frac{1}{k^{n}})=\sum_{j>k}\frac{1}{j^mk^n}+\sum_{j=k}\frac{1}{j^mk^n}+\sum_{j<k}\frac{1}{j^mk^n} $$

오일러 분해 공식

  • $r,s>1$ 일 때,

$$\zeta(r)\zeta(s)=\sum_{a=0}^{s-1}\binom{a+r-1}{a}\zeta(r+a,s-a)+\sum_{a=0}^{r-1}\binom{a+s-1}{a}\zeta(s+a,r-a)$$


기타

  • 다음이 성립한다

$$ 2\zeta(n,1)=n \zeta(n+1)-\sum_{i=1}^{a-2}\zeta(n-i)\zeta(i+1) $$

$$\zeta(2,1)=\zeta(3)$$ $$\zeta(4,1)=2\zeta(5)-\zeta(2)\zeta(3)$$


메모


관련된 항목들


계산 리소스


사전 형태의 자료


관련논문

  • Furusho, Hidekazu. “On Relations among Multiple Zeta Values Obtained in Knot Theory.” arXiv:1501.06638 [math], January 26, 2015. http://arxiv.org/abs/1501.06638.
  • Zhao, Jianqiang. “Uniform Approach to Double Shuffle and Duality Relations of Various Q-Analogs of Multiple Zeta Values via Rota-Baxter Algebras.” arXiv:1412.8044 [math], December 27, 2014. http://arxiv.org/abs/1412.8044.