가우스 합과 데데킨트 합의 관계

수학노트
http://bomber0.myid.net/ (토론)님의 2012년 4월 22일 (일) 12:29 판
둘러보기로 가기 검색하러 가기
이 항목의 수학노트 원문주소

 

 

개요
  • 가우스 합
    \(S(p,q)=\sum_{r=0}^{q-1} e^{\pi i pr^2/q}\)
  •   데데킨트 합
    \(s(b,c)=\frac{1}{4c}\sum_{n=1}^{c-1} \cot \left( \frac{\pi n}{c} \right) \cot \left( \frac{\pi nb}{c} \right)\)
  • 둘 사이의 관계

 

 

정의
  • 데데킨트합
    \(\operatorname{Ddk}(a,c)=\frac{1}{4 c}\sum _{n=0}^{c-1} \cot \left(\frac{\pi (2 n+1)}{2 c}\right) \cot \left(\pi \left(\frac{a (2 n+1)}{2 c}+\frac{1}{2}\right)\right)\)
  • 가우스합
    \(\operatorname{Ga}(a,c)=\frac{1}{\sqrt{c}}\sum _{r=0}^{|c|-1} \exp \left(\frac{i \pi a r^2}{c}\right)\)
  • remark
    이 정의는  데데킨트 합 에서의 정의와는 다르다
    \(s(b,c)=\frac{1}{4c}\sum_{n=1}^{c-1} \cot \left( \frac{\pi n}{c} \right) \cot \left( \frac{\pi nb}{c} \right)\)

 

 

가우스 합과 데데킨트 합의 관계
  • \(\operatorname{Ga}(a,c)=\exp(-\pi i \operatorname{Ddk}(a,c))\)

 

 

 

메모

 

 

\(\sum_{n=-\infty}^\infty q^{n^2}= \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + q^{2m-1}\right)^2\)

 

 

 

 

 

\(\sqrt{t}\theta(\frac{p}{q}+it)\sim \frac{1}{q}S(p,q)=\frac{1}{q}\sum_{r=0}^{q-1} e^{\pi i pr^2/q}\)

 

\(\sqrt{\frac{t}{2\pi}}\exp({\frac{\pi^2}{6k^2t}})\eta(\frac{h}{k}+i\frac{t}{2\pi})\sim \frac{\exp\left(\pi i (\frac{h}{12k}-s(h,k)\right)}{\sqrt{k}}\)

 

 

  • asymptotic analysis of basic hypergeometric series
  • asymptotic analysis of modular function

 

 

 

 

 

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서