Lieb-Liniger delta Bose gas
imported>Pythagoras0님의 2013년 3월 4일 (월) 16:05 판
introduction
- N bosons interacting on the line $[0,L]$ of length L via the delta function potential
- one-dimensional Bose gas
- 1963 Lieb and Liniger solved by Bethe ansatz
Hamiltonian
- quantum mechanical Hamiltonian
\[H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)\]
wave function
- $\psi(x_1, x_2, \dots, x_j, \dots,x_N)$
- $\psi(x_1, \dots, x_N) = \sum_P a(P)\exp \left( i \sum_{j=1}^N k_{Pj} x_j\right)$
$$ a(P) = \prod\nolimits_{1\leq i<j \leq N}\left(1+\frac{ic}{k_{Pi} -k_{Pj}}\right) \ . $$
two-body scattering term
- \(s_{ab}=k_a-k_b+ic\)
Bethe-ansatz equation
\[\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}\]
energy spectrum
- energy of a Bethe state
\[E=\sum_{j=1}^{N}k_j^2\]
computational resource
encyclopedia
articles
- http://link.springer.com/article/10.1007%2FBF02097001
- C. N. Yang and C. P. Yang Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction, J. Math. Phys. 10, 1115 (1969)
- C.N. Yang Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312-1315
- Elliott H. Lieb and Werner Liniger Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State, 1963