로그함수와 유리함수가 있는 정적분

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 12월 28일 (월) 02:18 판
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 가기 검색하러 가기

개요

  • 다음 정적분의 계산\[\int_{0}^{\infty}\frac{\ln(x^{2}+1)}{x^{2}+1}\,dx=\pi\ln2\]
  • 로그 사인 적분 (log sine integrals)의 다음 결과를 이용할 수 있다\[\int_{0}^{\pi/2}\log(\sin x)\,dx=-\frac{\pi\ln 2}{2}\]




치환적분을 이용한 방법

\(I=\int_{0}^{\infty}\frac{\ln(x^{2}+1)}{x^{2}+1}\,dx\) 에서 \(x=\tan (t)\) 로 두면,

\(I=\int_0^{\frac{\pi }{2}} \log \left(\sec ^2(t)\right) \, dt=-2 \int_0^{\frac{\pi }{2}} \log (\cos (t)) \, dt\)

로그 사인 적분 (log sine integrals) 에서 얻은

\(\int_{0}^{\pi/2}\log(\sin x)\,dx=-\frac{\pi\log 2}{2}\) 와 \(\int_{0}^{\pi/2}\log(\sin x)\,dx=\int_{0}^{\pi/2}\log(\cos x)\,dx\) 이용하면, \(I=\pi\ln2\) 를 얻는다.




메모




관련된 항목들

수학용어번역



매스매티카 파일 및 계산 리소스



사전 형태의 자료



리뷰논문, 에세이, 강의노트