대수적다양체의 제타함수

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 10월 31일 (수) 12:40 판 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기

==이 항목의 스프링노트 원문주소

 

 

개요
  • 유한체 \(\mathbb{F}_q\)  (\(q=p^n\)) 에서 정의된 사영다양체의 해의 개수에 대한 생성함수

 

 

로컬 제타함수
  • \(N_r\) 이  \(\mathbb{F}_{q^r}\) 에서의 해의 개수라 하면
    \(Z(T,\mathbb{F}_{q})=\exp(\sum_{r=1}^{\infty}N_r\frac{T^r}{r})\)
  • 소수 \(p\)의 경우 다음과 같이 쓰기도 함
    \(Z_p(T):=Z(T,\mathbb{F}_p)\)
  • \(T=q^{-s}\) 로 쓰면, \(L\)-함수의 로컬인자들을 얻는다

 

 

  • 사영 직선
    \(N_m = q^m + 1\)
    \(Z(T)=\frac{1}{(1 - T)(1- qT)}\)
  • \(X_0^2=X_1^2+X_2^2\)
    \(Z(T)=\frac{1}{(1 - T)(1- qT)}\)
  • non-singular 타원곡선 (over \(\mathbb{F}_p\))
    \(Z_p(T)=\frac{1-a_pT+pT^2}{(1 - T)(1- pT)}\)
    여기서 \(a_p=p+1-\#E(\mathbb{F}_p)\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서