라플라스 변환

수학노트
http://bomber0.myid.net/ (토론)님의 2010년 8월 13일 (금) 10:31 판 (피타고라스님이 이 페이지의 위치를 <a href="/pages/4181599">푸리에 해석</a>페이지로 이동하였습니다.)
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소

 

 

개요

 

 

 

정의

\(F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt\)

 

 

성질

\(\mathcal{L}\left\{\frac{df}{dt}\right\} = s\cdot\mathcal{L} \left\{ f(t) \right\}-f(0)\)

 

\(f\)가 유계이고, \(t\geq 0\)에서 조각적 연속(piecewise continuous)라 하자.

\(\mathfrak{R}(s)\geq 0\)에서 정의된 함수 \(F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt\) 가 \(\mathfrak{R}(s)\geq 0\)에서 해석함수로 확장되면,

\(F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt\)

 

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그