부정적분의 초등함수 표현(Integration in finite terms)

수학노트
http://bomber0.myid.net/ (토론)님의 2009년 8월 16일 (일) 15:21 판
둘러보기로 가기 검색하러 가기

간단한 소개

 

 

 

리우빌의 정리

(정리 ) 리우빌, 1835

(a) \(F\)가 \(x,y_1,\cdots,y_m\)의 대수적함수이고,  \(y_1,\cdots,y_m\) 는 \(x\)의 함수로 \(\frac{dy_1}{dx},\cdots,\frac{dy_m}{dx}\) 는 \(x,y_1,\cdots,y_m\)의 대수적함수로 표현되면, 다음 두 명제는 동치이다.

(i) \(\int F(x,y_1,y_2,\cdots,y_m) \,dx\) 는 초등함수이다.

(ii) \(\int F(x,y_1,y_2,\cdots,y_m) \,dx=U_0+\sum_{j=1}^{n}C_j \ln(U_j)\)  여기서 \(C_j\)는 상수이고, \(U_j\)는 \(x,y_1,\cdots,y_m\)의 대수적함수

(b)  \(F\)가 \(x,y_1,\cdots,y_m\)의 유리함수이고,  \(y_1,\cdots,y_m\) 는 \(x\)의 함수로 \(\frac{dy_1}{dx},\cdots,\frac{dy_m}{dx}\) 는 \(x,y_1,\cdots,y_m\)의 유리함수로 표현되면, 다음 두 명제는 동치이다.

(i) \(\int F(x,y_1,y_2,\cdots,y_m) \,dx\) 는 초등함수이다.

(ii) \(\int F(x,y_1,y_2,\cdots,y_m) \,dx=U_0+\sum_{j=1}^{n}C_j \ln(U_j)\)  여기서 \(C_j\)는 상수이고, \(U_j\)는 \(x,y_1,\cdots,y_m\)의 유리함수 


리우빌 정리의 특수한 경우

(정리 ) 리우빌, 1835

 

\(\int f(x)e^{g(x)} \,dx\) 여기서 \(f(x), g(x)\) 는 유리함수

  • \(F(x,y_1)=xy_1\), \(y_1=e^{g(x)}\) 로 두면 리우빌 정리(b)의 조건을 만족시킴
    \(y_1'=g'(x)e^{g(x)}=g'(x)y_1\) 는 \(x,y_1\) 의 유리함수

 

 

 

 

 

상위 주제

 

 

 

하위페이지

 

 

재미있는 사실

 

 

역사

 

[[수학사연표 (역사)|]]

관련된 다른 주제들

 

표준적인 도서 및 추천도서
  • Integration in finite terms: Liouville's theory of elementary methods
    • Joseph Fels Ritt

 

위키링크

 

 

참고할만한 자료