양자 다이로그 함수(quantum dilogarithm)
http://bomber0.myid.net/ (토론)님의 2011년 6월 30일 (목) 05:44 판
이 항목의 수학노트 원문주소
개요
- 다이로그 함수(dilogarithm) 의 q-analogue
바일 대수(Weyl algebra)
- noncommutative geometry
- \(uv=qvu\)
q-integral (Jackson integral)
- \(0<q<1\)에 대하여 다음과 같이 정의
\(\int_0^a f(x) d_q x = a(1-q)\sum_{k=0}^{\infty}q^k f(aq^k )\)
\(\int_0^{\infty} f(x) d_q x =(1-q)\sum_{k=-\infty}^{\infty}q^k f(aq^k )\) - \(q\to 1\) 이면, \(\int_0^a f(x) d_q x \to \int_0^a f(x) dx \)
quantum dilogarithm
\(\Psi(z)=\prod_{n=0}^{\infty}(1-zq^n)=\sum_{n\geq 0}\frac{(-1)^nq^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)
\(\Psi(z)=\exp(\frac{\operatorname{Li}_{2,q}(z)}{q-1})\)
\(\operatorname{Li}_{2,q}(z) = -\int_0^z{{\ln (1-t)}\over t} d_{q}t \)
\(\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt \)
asymptotics
- \(q=e^{-t}\) and as the t goes 0 (i.e. as q goes to 1)
\(\sum_{n=0}^{\infty}\frac{q^{\frac{A}{2}n^2+cn}}{(q)_n}\sim\exp(\frac{C}{t})\)
where C= sum of Rogers dilogarithms
quantum 5-term relation
- In Weyl algebra, the following identity holds
\((v)_{\infty}(u)_{\infty}=(u)_{\infty}(-vu)_{\infty}(v)_{\infty}\) - manufacturing matrices from lower ranks
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문과 에세이
관련논문
관련도서