클라인-고든 방정식

수학노트
http://bomber0.myid.net/ (토론)님의 2012년 6월 2일 (토) 03:08 판
둘러보기로 가기 검색하러 가기
이 항목의 수학노트 원문주소

 

 

개요
  • 슈뢰딩거 방정식 의 상대론적 일반화의 시도로부터 얻어짐
  • 특수 상대성 이론의 \(E^2=p^2+m^2\)
  • \(\Box + m^2=\frac{\partial^2}{\partial t^2 } - \nabla^2 +m^2\)
  • \((\Box + m^2) \psi = 0\)
    • \((\Box + m^2) \psi =\psi_{tt}-\psi_{xx}+m^2\psi=0\)
    • \((\Box + m^2) \psi =\psi_{tt}-\psi_{xx}-\psi_{yy}-\psi_{zz}+m^2\psi=0\)

 

 

오일러-라그랑지 방정식
  • 라그랑지안 \(\mathcal{L}(\varphi) = \frac{1}{2}\{(\partial_{\mu}\varphi)^2 - m^2\varphi^2\}\)  에 대하여 오일러-라그랑지 방정식
    \(\partial_\mu \left( \frac{\partial \mathcal{L}}{\partial ( \partial_\mu \varphi )} \right) - \frac{\partial \mathcal{L}}{\partial \varphi} = 0\)   을 적용하여 얻어진다

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서