프랙탈

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 11월 1일 (목) 13:17 판 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소==    
개요==
  • 다음 성질들을 가지는 도형 또는 형상
    • 소수차원
    • 부분이 전체를 닮는 자기 유사성(self-similarity)
       
 
예==    
생성방법==
  • iterative function system
  • escape time 프랙탈
   
예 : 줄리아 집합==
  • 복소수 \(c\in\mathbb{C}\)에 대하여 다음과 같은 점화식(iteration)을 정의하자. 
    \(z_0=z\)
    \(z_{n+1} = z_n^2 + c\)
  • 이 점화식에 의한 의한 궤도가 유계가 되는 복소수 \(z\in\mathbb{C}\) 들이 이루는 집합의 경계를 복소수 \(c\in\mathbb{C}\)에 대한 줄리아 집합(Julia set)이라 한다
   
만델브로트 집합==
  • 복소수 \(c\in\mathbb{C}\)에 대하여 줄리아 집합에서와 같은 점화식을 정의
    \(z_{n+1} = z_n^2 + c\)
  • 이 점화식에 의한 \(z_0=0\)의 궤도가 유계가 되는 복소수 \(c\in\mathbb{C}\)의 집합을 만델브로 집합이라 한다
  • 줄리아 집합이 연결집합이 되도록 하는 복소수 \(c\in\mathbb{C}\)
   
재미있는 사실==      
역사==      
메모==    
관련된 항목들==    
수학용어번역==    
사전 형태의 자료==    
관련논문==    
관련도서==    
관련기사==    
블로그==