디리클레 유수 (class number) 공식
Pythagoras0 (토론 | 기여)님의 2013년 3월 26일 (화) 17:35 판 (새 문서: ==개요== * 디리클레의 유수 공식은 수체의 유수(class number)를 비롯한 여러 불변량과 <math>\zeta_{K}(s)</math>의 <math>s=1</math>에서의 residue 사이의 ...)
개요
- 디리클레의 유수 공식은 수체의 유수(class number)를 비롯한 여러 불변량과 \(\zeta_{K}(s)\)의 \(s=1\)에서의 residue 사이의 관계를 표현
\[ \lim_{s\to 1} (s-1)\zeta_K(s)=\frac{2^{r_1}\cdot(2\pi)^{r_2}\cdot h_K\cdot \operatorname{Reg}_K}{w_K \cdot \sqrt{|d_K|}}\]
- 기호
- $r_1$는 real embedding 의 개수, $2r_2$는 complex embedding의 개수
- \(h_K\) 는 class number
- \(w_K\)는 \(\mathcal{O}_K\) 의 unit group의 크기
- \(d_K\)는 \(K\)의 판별식(discriminant)
- $\operatorname{Reg}_K$는 regulator
데데킨트 제타함수
- 수체 \(K\)에 대하여, 데데킨트 제타함수는 다음과 같이 정의됨
\[\zeta_{K}(s)=\sum_{I \text{:ideals}}\frac{1}{N(I)^s}=\prod_{\wp \text{:prime ideals}} \frac{1}{1-N(\wp)^{-s}}\]
용어번역
- class - 대한수학회 수학용어집