오일러의 오각수정리(pentagonal number theorem)
Pythagoras0 (토론 | 기여)님의 2012년 11월 2일 (금) 08:37 판 (찾아 바꾸기 – “* [http://navercast.naver.com/science/list ” 문자열을 “” 문자열로)
이 항목의 스프링노트 원문주소
개요
- 오일러의 오각수정리
\(\prod_{n=1}^\infty (1-x^n)=\sum_{k=-\infty}^\infty(-1)^kx^{k(3k-1)/2}\)
\((1-x)(1-x^2)(1-x^3) \cdots = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \cdots\) - 세타함수의 무한곱표현의 일종으로 이해할 수 있음(자코비 세타함수의 삼중곱 공식 참조)
\(\sum _{m=-\infty }^{\infty } (-1)^mq^{\frac{3}{2}m^2\pm \frac{1}{2}m} = \prod _{n=1}^{\infty } \left(1-q^{3 n}\right)\left(1-q^{3n-2}\right)\left(1-q^{3n-1}\right)\) - 분할수\(p(n)\)의 생성함수의 역이다
\(\sum_{n=0}^\infty p(n)x^n = \prod_{n=1}^\infty \frac {1}{1-x^n} \right = \prod_{n=1}^\infty (1-x^n)^{-1} \)
오각수
[/pages/4145675/attachments/2083649 pentagonal-numbers.gif]
- 1, 5, 12, 22, 35,...
\(\frac{n(3n-1)}{2}\)
일반화된 오각수
- \((1-x)(1-x^2)(1-x^3) \cdots = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \cdots\)에 등장하는 수
- \(k=\frac{j(3j\pm 1)}{2}\) 꼴로 주어짐 (\(j=1,2,3\cdots\))
증명
- 자코비 세타함수의 삼중곱표현의 특수한 경우로 얻어진다
- 삼중곱에 대해서는 자코비 세타함수 항목 참조
(증명)
\(\prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)=\sum_{n=-\infty}^\infty z^{n}q^{n^2}\)
\(q=x^{3/2}\), \(z=-x^{1/2}\)로 두면, 다음을 얻는다
\(\operatorname{(LHS)}=\prod_{m=1}^\infty \left( 1 - x^{3m}\right) \left( 1 - x^{1/2}x^{3m-3/2}}\right) \left(1 - x^{-1/2}x^{3m-3/2}}\right)=\prod_{m=1}^\infty \left( 1 - x^{3m}\right) \left(1- x^{3m-1}}\right) \left(1 - x^{3m-2}}\right) = \prod_{n=1}^\infty (1-x^n)\)
\(\operatorname{(RHS)}=\sum_{n=-\infty}^\infty (-1)^{n}x^{n(3n-1)/2}\)■
데데킨트 에타함수
- 위의 급수에 \(q^{1/24}\)를 곱하면, 데데킨트 에타함수의 세타함수 표현을 얻는다
\(\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})=\sum_{n=-\infty}^\infty(-1)^n q^{\frac{(6n+1)^2}{24}}\)
여기서 \(q=e^{2\pi i\tau}\). - 데데킨트 에타함수는 모듈라 성질을 가진다
역사
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/오각수
- http://en.wikipedia.org/wiki/pentagonal_number_theorem
- http://en.wikipedia.org/wiki/Pentagonal_numbers
매스매티카 파일 및 계산 리소스4145675/attachments/5127574
- https://docs.google.com/leaf?id=0B8XXo8Tve1cxZDljNjU2YzYtYjZiNi00ZmVjLWI2NGEtNDBlMmQ0OWY3ZmIy&sort=name&layout=list&num=50
- http://www.wolframalpha.com/input/?i=
- http://www.wolframalpha.com/input/?i=pentagonal+numbers
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
관련논문
- Euler and the pentagonal number theorem
- Jordan Bell, arXiv.org, 2005
- Jordan Bell, arXiv.org, 2005
- Euler's Pentagonal Number Theorem
- George E. Andrews, Mathematics Magazine, Vol. 56, No. 5 (Nov., 1983), pp. 279-284
- George E. Andrews, Mathematics Magazine, Vol. 56, No. 5 (Nov., 1983), pp. 279-284
블로그
네이버 ]