Chowla-셀베르그 공식

수학노트
http://bomber0.myid.net/ (토론)님의 2010년 5월 13일 (목) 06:56 판
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소

 

 

간단한 소개
  • 복소이차수체 \(K\), \(d_K\)는 판별식, 이차잉여에 대한 디리클레 L-함수는 다음을 만족시킴
    \(L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})\)

 

 

  • 디리클레 베타함수
    \(K=\mathbb{Q}(i)\)
    \(\beta'(1)=L_{-4}'(1)=\frac{\pi}{4}(\gamma+\ln 2\pi)-\frac{\pi}{2}\ln(\frac{\Gamma(1/4)}{\Gamma(3/4)})\)

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그