치환적분과 변수분리형 미분방정식
http://bomber0.byus.net/index.php/2009/07/11/1386
미분방정식 풀때, 변수분리
\(\frac{dy}{dx}=\frac{f(x)}{g(y)}\)
\({g(y)}{dy}={f(x)}{dx}\)
\(\int {g(y)}{dy}=\int {f(x)}{dx}\)
적분한뒤, y를 x의 함수로 쓴다.
이렇게 해도 되는것임? 하는 것이 질문이다.
그런데 사실 이것이 처음이 아니다. 아마 내 기억에는 수학의정석에서도 치환적분에서 이런 표현을 쓰지 않았나 생각이 든다.
\(\int \sin^2x \cos x\,dx\)
\(y=\sin x \)
\(dy=\cos x\,dx\)
\(\int \sin^2x \cos x\,dx=\int y^2 dy=\frac{1}{3}y^3+C=\frac{1}{3}\sin^3 x+C\)
\(y\)가 \(x\)의 함수라면 치환적분의 공식을 다음과 같이 쓸 수 있다.
\(\int {g(y)}{dy}=\int{g(y(x))}y'(x)dx\)
\(\int {g(y)}{dy}=\int {f(x)}{dx}\)
\(\int {g(y)}{dy}=\int{g(y(x))}y'(x)dx\)
\(G(y)+c=\int {g(y)}{dy}=\int{g(y(x))}y'(x)dx\)
\(y\)가 \(x\)의 함수일때,
\(y'(x)=\frac{dy}{dx}\)
\(dy=y'(x)dx\)
라는 형식적인 표현을 받아들이자.
그러면 치환적분을 할때, 위와 같은 방식의 표현을 사용해도 괜찮다.
미분형식에는 적분기호를 씌울수 있다.