펠 방정식(Pell's equation)
http://bomber0.myid.net/ (토론)님의 2010년 8월 21일 (토) 18:16 판
이 항목의 스프링노트 원문주소
간단한 소개
- \(x^2-dy^2=1\) (\(d\) 는 완전제곱수를 약수로 갖지 않는 1보다 큰 자연수)형태의 디오판투스 방정식
- 연분수 전개를 통하여 모든 해를 구할 수 있음
- 해의 집합은 군의 구조를 통하여 이해할 수 있음
- \(x^2-dy^2=\pm 1\) 의 자연수 해를 구하는 문제는 실수 이차 수체의 unit 을 구하는 문제와 같음
연분수 전개와 fundamental solution
- \(\sqrt{d}\) 를 연분수 전개할때 얻어지는 convergents \({h_i}/{k_i}\) 가 펠방정식의 해가 되는 \(x=h_i, y=k_i\) 를 찾을 수 있으며, 이 때 \(x\)값을 가장 작게 하는 해를 fundamental solution 이라 함.
- 무리수 \(\alpha\)에 대하여, 유리수 \(p/q\)가 아래의 부등식을 만족시키는 경우, \(p/q\)는 무리수 \(\alpha\)의 단순연분수 전개의 convergents 중의 하나이다
\(|\alpha-\frac{p}{q}|<\frac{1}{2{q^2}}\)
d=7인 경우
- 연분수 전개를 통한 유리수근사
\(\frac{2}{1},\frac{3}{1},\frac{5}{2},\frac{8}{3},\frac{37}{14}\cdots\) - 펠방정식의 해 찾기
\(2^2-d\cdot 1^2=-3\)
\(3^2-d\cdot 1^2=2\)
\(5^2-d\cdot 2^2=-3\)
\(8^2-d\cdot 3^2=1\)
\(37^2-d\cdot 14^2=-3\) - 따라서 펠방정식 \(x^2-7y^2=1\)의 fundamental solution 은 \((8,3)\) 이된다
d=13
- fundamental soltion \((x_1,y_1)\) 가 \(y_1>6\) 를 만족시키는 가장 작은 d
- \(649^2-13\cdot180^2=1\)
d=109
- 페르마의 문제
- \(158070671986249^2 -109\cdot15140424455100^2=1\)
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/펠방정식
- http://en.wikipedia.org/wiki/Pell's_equation
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Solving the Pell Equation
- H. W. Lenstra Jr. Notices of the AMS 49 (2002), 182–92
- http://www.jstor.org/action/doBasicSearch?Query=Pell's+equation
- http://www.jstor.org/action/doBasicSearch?Query=
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)